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1. INTRODUCTION

In circuit theory , the impulse response that characterizes a linear

circuit may be determined from the knowledge of the singularities of the

response function in the complex frequency plane and the corresponding

residues. The impulse response of the circuit is then simply a summation

of all the residues multiplied by exponentially damped sinusoids. In

recent years a similar approach has been used to characterize the tram—

sientphenomenon of electromagnetic scattering and antenna problems. This

approach is known as the singularity expansion method (SEM) [1], [2].

The development of the singularity expansion method arose from in—

sight into the general characteristics of typical transient response

behavior observed on various electromagnetic structures. The transient

response waveforms of these structures appear to be dominated by a few

exponentially damped sinusoids. This observation is especially apparent

If one looks at the late time response of slender or thin wire structures.

The resonant frequency , damping constant, and current distribution of

some of these resonant modes had been calculated for the thin wire and

prolate spheroid as early as 1930 [3], [4J. However , not until the sin-

gularity expansion method came into being was it possible to determine the

modal resonances and the excitation coefficient of each mode for a

structure with an arbitrary incident wave.

In the singularity expansion method the transient response is written

as a sum of exponentially damped sinusoids. In order to write this sum ,

it is necessary to first determine the location of the complex natural

frequencies or pole singularities of the structure being studied . The 
-

•

conventional approach for determining the singularities of a system is

based on an iterative search procedure that seeks the zeros of the system

1
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determinant in the complex frequency plane. This approach has been used

successfully by many people and has given extremely satisfying results.

A few illustrations are given in References [5] — (7]. Since the iter—

ative search is a slow procedure, it is usually economical to extract

only a few poles. Also in the conventional techniques, the poles cannot

be extracted from the time—domain formulation of the problem. - •

Recent development of methods for the direct production of both

numerical [8],  (9] and experimental (10], [11] transient electromagnetic

response data has generated considerable interest in the possibility of

direct extraction of the poles and their accompanying residues from

given time—domain system response. This thesis presents a numerical

technique for systematically determining the system singularities from

the transient response data of that system. The approach that will be

developed here is based on Prony’s algorithm which was first published

in 1795 [12] and has appeared in a few good numerical analysis texts

( 13], [14].

In Chapter 2 the mathematical notation is developed for the impulse

response function for electromagnetic antennas and scatterers. The

assumptions used in reducing the impulse response to a sum of exponentials

are also presented . The necessity of removing the influence of the

driving function from the transient response if the driving function is

not a true delta function is discussed in detail.

Prony ’s method is developed in detail in Chapter 3. The method is

applicable to systems containing multiple as well as simple poles. Sev—

eral numerical examples are presented and the results are analyzed.

These results are used to establish guidelines for the use of the method

and to bring out some of the problems associated with the method.

2
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A systematic procedure by which the number of poles inheren : in ti e

transient response can be determined is necessary in order to properl y

use Prony ’s method. Chapter 4 presents two techniques for doing this.

The first technique is based on an orthogonalization procedure and the

second technique is based on an eigenvalue approach. Both methods have

advantages and disadvantages inherent in their implementation. These

advantages and disadvantages are presented by showing several numerical

examples.

It is shown in Chapter 5 that noise seriously affects the poles

returned by Prony ’s method. In some cases the noise level is high enough

to completely corrupt the results. Several statistical studies are pre-

sented which relate the standard deviation of the noise to the quality of

the results obtained from Prony ’s method .

Chapter 6 discusses several of the applications in which the de-

veloped methods can be implemented. Some of these top ics are : system

analysis, radar target recognition, the study of spectral characteristics ,

and data reduction and extrapolation. Examples are used to show that

Prony ’s method applied to these problems has definite numerical advan—

• tages over the conventional approaches used.

An alternative to Prony ’s method is presented in Chapter 7. This

approach is the Padé approximation but it is extremely limited in its

usefulness. Chapter 8 presents conclusions and reconunendatior s for

fu rther study.

3
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2. MATHEMATICAL FORM OF THE TRANSIEN T RESPONSE

This chapter introduces the mathematical form of the impulse re-

sponse function for an electromagnetic scatterer or antenna. The impulse

response will be written in both the s—plane (Laplace transform) domain

and in the time domain. The assumptions necessary for reducing the impulse

response to a simple sum of exponentials are discussed. It is necessary

to reduce the response to a sum of exponentials so that the methods of

Chapter 3 may be applied. The form of the response functions for an

arbitrary excitation is also studied .

2.1 The Impulse Response

The normalized s—plane impulse or delta function response for a

finite—sized object that has only pole singularities in free space is

generally written [11, 121

,s) = 

~ 
n.(s i,~

) v~ (~ ) (s - s~)~~~ + ,s,~) (2.1)
i=l 1

where the above terms are defined as:

s
1 

— natural frequency , pole singularity, natural resonances.

L This is a complex frequency for which the system has a re—

sponse when no forcing function is applied. The poles must

appear, in complex conjugate pairs or lie on the real axis.

The poles also must lie in the negative half of the s—plane.

— natural mode. -

This is the response of the system at s~, which depends on

the position r on the structure and the object parameters

only.

L _ _  _ _~~~ ~~~~~~~~~~~~ ~:~~i -~~ -~~~~~~~~ -- ~~~~ ~~~~~~
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(si,~

) — coupling coefficient.

This is the strength of the natural oscillation s1 in terms

of the system and the incident wave parameters. It is inde—

pendent of position.

p — polarization of incident plane wave.

— the position vector.

This is the position on the structure at which the transient

response is being measured or observed.

th
— the multiplicity of the i pole.

The term ~~~~~~~ is an entire function of s and dependent on the form

of the coupling coefficient and the incident wave. In the most general

case this term is required by the Mittag—Leffler Theorem (15] in order

-
- to guarantee convergence of the infinite series. It has been hypothe—

- sized that the entire function is not needed in most electromagnetics

problems and could normally be neglected.

The impulse response (2.1) can be written in the time domain as

— —  — 
s
itH(r , t) u(t — t

0
) 

~ ~~~~~~~~~~~~~~~~~~ 

v “-) e (2.2)
i~l

where the entire function has been neglected and all poles have been

assumed to be simple. The step function u(t — t
0

) is present so that

the response does not start until, to, the time at which the response

begins at the particular observation position ~ on the body. Since -~
the entire function has been neglected , it is necessary to require that

be greater than zero because a delta function source applied at r

at t — 0 yields a delta function at t — 0 in the impulse response which

cannot be represented by the exponential 
terms.5
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As an example, consider a perfectly conducting finite dipole driven

at t — 0 by a delta function plane wave with the ~ field polarized in

the direction of the dipole axis. The impulse response of the induced

current at any position r on the dipole is of the form

S t  1
I(r,t) = 5’ A~(r) e + B.(r) 6 ( t ) (  u(t) . (2 .3)

i—I 1 j

If the induced current is expressed as a sum of complex exponentials it

is written as

IG, t) — u (t  — t
0)[ ~ 

A
i
(
~
) e i] (2.4)

i—l

where t
0 
is set equal to 0+, the time at which the delta function turns

off. Note here that for convenience the coupling coefficient and the

natural mode have been combined into one term A
~
(r). The s—plane version

of Expression (2.3) is written

— ~~ A1(r)
I(s , r) = 

~ — 
+ Bi (r) (2.5)

i—i I

where B .(r) is the inverse Laplace transform of B~ (r) 5(t), which is a

constant in s and a function of position ~~.

In Equations (2.1) — (2.5) the series contains an infinite number

of terms. In general only the first few terms of this series are needed

to adequately represent the late time response of the system (1], (5].

The early time response on the other hand requires a larger number of

poles for reasonable convergence to the true response. This is in—

tuitively reasonable if one realizes that , in general, as the frequency

or the imaginary part of the pole increases so does the damping constant

6

-
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or real part. Thus, for early times both high and low frequency components

are present and as time progresses tie higher frequency components damp

out and disappear until only the first few dominant resonant modes remain.

Moreover, all transient response data that can be generated either ex—

perimentally or numerically are necessarily band limited and thus contain

only a finite number of poles. For these reasons the series is truncated

after N terms, where N is the number of resonant frequencies contained

in the transient response being studied.

2.2 Resj,onse Due to an Arbitrary Excitation

Since a true impulse excitation function cannot be realized, it is

of interest to determine the form of the transient response due to an

- 
arbitrary exciting waveform. A general response function R(s,~ ) is

given in the Laplace transform domain as

R(s,r) = F(s,r) H(s,r) (2.6)

where H(s,~ ) and F( s,~) are the Laplace transforms of the system ’s un—

pulse response and the arbitrary driving function, respectively. The

system ’s impulse response H(s,r) was written in (2.1) and, thus , R( s ,r)

can be expressed as

4 - N A .( r)
— F(s ,~~)4 1 ~ (2 .7 )

where the possible entire function has been neglected and the coupling

coefficient and natural mode have been combined into one term, A~ (r).

For convenience A~(r) can be regarded as the residue for the 
~th complex

Iii 
7
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pole. Note that the residue is a function of position on the object.

If the inverse Laplace transform of (2.7) is performed, then the tran-

sient response function R(t,r) is written in general form as

R(t~~ ) — 

~~~~ 
e~~~ + g(t,~) (2.8)

1=1

where

B
~

(r ) F(s i,~
) A

i(r)

and the term g(t,~ ) is dependent on the form of the driving function.

Equation (2.8) shows that the transient response due to an arbitrary

exciting waveform can, in general , be written as a sum of complex ex—

ponentials plus some added term g(t,~). The desire here is to be able

to express the transient response as a sum of exponentials only. Thus,

the character of the term g(t,r) needs to be studied to determine if it

can be either removed or expressed also as a sum of exponentials.

If the exciting waveform itself has pole singularities, as in the

case of a step function or a sinusoidal function, then g(t,~ ) can be

expressed as a sum of exponentials. As an example, consider a driving

function which is a simple step function u(t), then, the Laplace trans—

form of the driving function is

F(s) 1/s

If the impulse response of the system is

N A
K(s) .~~ ~~~~i—i i

then the response R(s) is simply

N A
R( s) — F( s) H(s) — ‘~~ ~ 1 (2.9)

- — -~~ -~ ~-,--- - - - --- -‘- - -
~~~

- 
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When the inverse Laplace transform is performed on R(s), one obtains

a-j°’ N A
R(t) — .~ 1— j .

~~ ~ 
est ds (2.lOa)

a+j~= 11 i

r N r~ i~
= u(t)I ~ A~[!__-_— — 

~~ (2.lOb)

L~’ 
iJJ

I N  s t i
u ( t ) (  

~ 
Bi e (2.lOc)

J
• where

N
B0~~~~~~~ A

i/sii—i

A.
1B — —

i S
i

and

5
0 = 0

Thus, since the step driving function has a singularity at the origin

then the response function is written as a simple sum of exponentials.

If the exciting waveform is of finite duration , that is, it is

turned off after some time t0, then it can be shown that the term g(t,r )

is identically equal to zero for time t greater than t0. Consider, for

example, the case where the driving function is a simple pulse

F(t) — u(t) — u(t — t
0
) ,

then

1. ~~~
F (s)_; (1 _ e  ) .

____________________________________ 
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j 



~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Again let the impulse response be

N A
H (s)— f 

~~~~~~~~~~~- - i—i i -

then, the response function in the Laplace transform domain is

R( s) = F (s) H ( s )  = ~ (1 - e °) 
~ 

1 (2.11)
i=J. I

The corresponding time domain expression for the response function is

R( t) = f - R( s) eSt ds (2. 12 a)

~ ~~~(e
i _ ],), 0 < t < t

0i_l i
R( t )  — (2 .l2b)

N s1t
~ B . e  ,

where

B~ = (1 — e
SitO
)

Expression (2.l2b) shows that after time t 0 the response function is

simply a sum of the exponentials which characterize the body while, be-

fore t0, the sum of exponentials contains one exponential term which is

dependent on the driving function.

When the driving function is not finite in tine and has no pole

singularities, as in the case of the Gaussian pulse, then the g(t,~)

term never disappears and cannot be written as a sum of exponentials.

However, this difficulty may be circumvented by simply deconvolving the

10
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response function R(t,r) in a standard manner to obtain the system’s

impulse response H(t,r). Equation (2.6) gives for instance

• H(s) . (2.13)

Thus, removing the driving function from the response function results

in the impulse response which is assumed to be a sum of exponentials

only. The inevitable presence of experimental and computational noise

limits the upper frequency for which the deconvolved spectrum H(s) is

accurate and , in practice, the computed spectrum must be truncated be-

yond this frequency . This simply sets a limit on N. Care also must

be taken to exclude the time t = 0 from the deconvolution because of

the presence of the delta function discussed previously.

Numerical examples of the above cases are given in Chapter 3 once

the method by which the poles will be extracted has been developed.

A

11 
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3. THE NUMERICAL METHOD FOR EXTRACTING POLES

In the previous chapter it was shown that the impulse response and

for certain cases the general transient response of a system can be ex-

pressed as a sum of a finite number of exponentials. This chapter will

develop the numerical method by which the values of the poles and their

corresponding residues can be obtained if the impulse or transient re-

sponse of the system is given. The numerical method used is based on

Prony ’s algorithm [12], [13], [14] which does not seem to be widely known.

Prony ’s algorithm has been used in the fields of automatic control [16]

and biological signal processing [17], but only to represent or synthesize

a signal in terms of a set of exponentials which do not necessarily have

any physical relationship to the system which produced the signal. The

desire here, however, is to extract from a system ’s transient response a

set of complex exponentials which are in fact the characteristic reso—

nances of the system being studied.
I

In this chapter Prony ’s method is developed for a system with simple

poles only. Prony’s method is then extended to systems containing multi—

pie poles. The derivation of Prony ’s method is presented in detail in

several different ways so that th~ reader will get a good feeling for

the method and the problems associated with it. An abbreviated treatment

is presented in [183. Several numerical examples are presented in order

to establish some guidelines for the use of the method and to illustrate

some of the problems associated with the method.

12
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3.1 Prony ’s Method for Simple Poles

3.1.1 The classical derivation

Thus far it has been assumed that for a system with only simple poles

the system ’s transient response could be expressed as

N s
1tR(t) — Y Ai e (3.1)

i—i

where the s~ are the pole singularities in the complex frequency plane

and the Ai are their corresponding residues. These residues will be a

function of the position of observation or measurement on the body being

considered and a function of the excitation function . That is, the residues I:

contain both the coupling coefficients and the natural modes. It should

also be noted that the s~ must be in complex conjugate pairs or lie on

the negative real axis in order to ensure that the response R(t) is real.

Since, in practice, one almost always deals with a discrete set of sampled

transient data, Equation (3.1) should be rewritten as

N s nt ~t~
R(t~) — Rn = ~ A~ e 

~‘ ; n — 0 ,1, . . ., N — 1 (3.2)
i—i

where ~ t is the size of the time—stepp ing interval used in obtaining

the sampled data and tn 
— nat. Equation (3.2) consists of M nonlinear-

equations in 2N unknowns. Another way of writing this set of equations

is 

-

~
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R0 
= A

1 + A 2 +. . . -

= A1Z1 + A2Z2 + . . . + AN ZN

R 2 A1Z1
2 + A2Z2

2 
+ . . . + AN ZN

2

= A~Z1~~
1 + A2Z 2

M 1  + . . . + ~~Z~~~
l (3.3a)

where

S ~t
(3.3b)

In this set of equations it is necessary to solve for both the N values

of Z~ and the N values of the A1. This solution requires that the value

of M be at least equal to 2N ; however , the solution to this set of

equations is nontrivial since they are nonlinear in the Z~,’s.

Let Z , . . .
~~ 
ZN be the roots of the algebraic equation

+ ~1
Z + n

2
Z + . . . + 0 (3.4a)

so that the left—hand side of (3.4) is equal to the product

(Z — Z
1

) (Z — Z2
) . . . (Z — ZN)

that is,

N m N

~ 
a Z  (Z — Z1) — 0 . (3.4b)

m’O
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The coefficients c&,~ may be determined as follows. Multiply the first

equation in (3.3) by ~~ the second by a1, . . ., the N + 1 by a
N and

- 
add the results. Since each of the Z~ satisfies Equation (3.4a), then

the result is of the form

+ a1
R
1 
+ . . . + cL~R~ — 0 . 

-•

A set of N — N — 1 additional equations is obtained in the same manner F

by starting successively with the second, third , . . ., (M — N) th

equations. Thus, it is possible to obtain the M — N linear difference

equations

a0R0 + a1
R
1 
+ . . . ~~~ — 0

- 

cz
0
R
1 
+ a

1
R2 + . . . a

NRN+l — ‘I

+ ~
z2R M_N + . . . a~R~41 = 0 (3.5a) 4

F
which can be more simply written as

~ 

a R ~~~ = 0; p + k = n 0,1, . . ., N — 1 . (3.5b)
p

Thus, the sampled values R1 satisfy an N
th order linear difference equation.

This difference equation will be referred to as Prony ’s difference equation .

I
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In Equations (3.5) the R~ are known, hence, this set can be solved

to obtain the N + 1 coefficients, a. If M — 2N then the system of equa—

tions may be solved directly by matrix inversion, and if M > 2N the system

may be solved approximately by the method of least squares. Equations

(3.5) are most conveniently solved by defining aN equal to one; then,

the a
r
’s may be obtained by solving the equations

~ ~~~~~ = 
~~

‘N+k’ p + k = a = 0,1, . . ., M — 1 . (3.6)

If M 2N this set of equations is written in matrix form as

AB = C (3.7a)

where

- R 0 R
1 

R2 . . .R N l~~

R1 R2 R
3 . . .

A R2 R3 R4 ,

R3 
R4 R

5

- . . . . R2N,,,,2 (3.7b)

- -



________________  - ~~~~~~
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~~~~~~~~~~~~~~~~~ 
- 

~~~~
--
~~
-

a
0

B =  a1

aNl  
- 

(3.7c)

N

C = _ R
N+l

(3 .7d)

- ‘ Matrix A is a square synznetrlc circulant matr ix and thus is readily in-

vertible. If N is greater than 2N , then the set of Equations (3.6)

can be solved using a least—squares approach. This is most conveniently

done by performing a pseudo—inverse to write Equations (3.6) in matrix

form as

AT AB AT C (3.8a)

where A is now a rectangular matrix of the form

17
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Ro R1

A —  

R2 
. . . . R

N

~~-N-l ~~-N ~~-2 
(3 .8b)

and

R
N

1:

(3.8c)

The square matrix formed by multiplying matrix A by its transpose AT is

simply a Gramian matrix and is also symmetric and circulant.

Once the a’s have been determined by either of the above approaches ,

the next step is to solve for the N values of Z~ . These Z1 are ob-

tained by finding the roots of the polynomial (3.4a). The N roots are

complex numbers and appear in complex conjugate pairs. The roots of

(3.4a) may be found by using any of the several polynomial root—f inding

methods. The most accurate and quickest of these methods is a routine

based on Muller ’s method [19], (20].

It is now a trivial matter to obtain the poles si,. Since the-Tàots

of (3.4a) were defined by (3.3b) as

-L 
- 

18 



________________________________________________ ____________ - -

- e
5j
~
t 

(3.3b)

then the poles are simply

L n z
i

~~1 
— (3.9)

The final step in Prony ’s method Is to determine the values of the

residues A
1. To do this one simply solves the matrix equation embodied

in Equations (3.3a). In matrix form this set of equations is written as

DE F , (3.l0a)

where

1 1 . . .  1

D —  Z1 Z2 . . . Z~

2
2 N

~~~ ~~~ . . . (3.lOb)

E - 

] 

I 
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F =

— 

RN_i ( 3.lOd)

Note that the matrix D is in the form of a Vandermonde matrix which has

an inverse which can be computed in closed form . If , howeve r , one w ishes

to solve Equation (3.3a) by using a least—squares approach then the re=

sultant matrix equation has a matrix which is only symmetric and cannot

be inverted as simply as the Vandermonde matrix D.

3.1.2 Relationship to the Z—transfortn

The method presented in the above subsection for finding the simple

poles and residues from a set of discrete transient data is Prony ’s

method as it is usually derived and used. However, Weiss and HcDonough

[21 ] have demonstrated that Prony ’ s method may be regarded as a Padd

approximation in the Z—t ransf ortn domain .

Consider the Z—transform of R(t) to be

R (Z) = R
0 

+ R1Z~~ + R2Z
2 + . . . + R2N 1z

_ (2N_l) 
+ . . ., . (3.11)

In the Padé approximation one seeks to equate the f i rs t  2N terms of (3.11)

with a function of the form

aNZ + aN Z~~~ + . . . + a1ZF(Z) — 
—1 

1 . . (3.12)
- - z + c~_~z~

’ + . . . + +

20
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Note that the denominator in (3.12) is the same as the polynomial in

(3.4a). Carrying out the Fade procedure by equating (3.11) and (3.12)

- 

and multiplying through by the denominator of (3.12) yield

• aNz + a
N lZ~~~ 

+ . . . + a1Z (ZN + cLN 1Z + . . . + + a0)

(R0 + R1Z 1 
+ R2Z

2 + . . . + R2N_lZ 
(2N~ l) 

+ .,) . (3.13)

Equating the coefficients of like powers of Z in (3.13) yields the fol-

lowing set of equations.

aN

aN_l _ RO
aN_l + R l

- R~0 °~N-2 
+ R1 aN 

+

a1 
= R0 a1 + R

1 
a
2 
+ . . + RN— i (3.l4a)

R
0 a0 

+ R 1a1 + . . . 
~~~~~~ 

+ - 0

R1 a0 + R2 a1
+ . . . R

N 
CL.~~~~

1 
+ 
RN+i 

0

a0 + RN + . . R2N_2 aN—l + R2N1 
— 0 (3.14b)

21
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Equations (3.14b) are the sane as Equations (3.5a) of the previous

section.

If the Z—transform of Equation (3.1) is taken, the result is

R(Z) 
~~~~~~ 

Ai ~ 
(3.15)

s n~t
where Z~ = e . Hence, the and the Z~ of the Padé approximation

in the Z—transform domain are the same as the and the Z~ of the pre-

vious section. This method allows one to solve for the A1 by a somewhat

simpler method. Rather than solving the matrix Equation (3.3a) , one

can simply solve for the a
1 in (3.l4a) and perform the partial fraction

expansion of to yield

N AI ~
. I -‘R( Z) = L — 

. (.l6)
i=1 i

3.1.3 Relationship to Corrington ’s d i f f e rence equation

In 1965 Corrington derived a difference equation from which it is

possible to extrapolate the time response of a linear lumped—constan t

time—invariant network to late time by knowing only discrete values of

the early—time response [22]. His difference equation can be shown to

be Prony ’s difference equation in a somewhat camouflaged form. His

derivation is interesting and is presented here in a similar form.

This derivation is useful when the development of the derivation for

• multiple poles is presented in the following section.

Equation (3.2) may be rewritten in an alternate form as

N snL ~t —s rj~tR[(n — r) ~t] — ~ A1 e e ; r — 0,1 , . . . , N . (3.17)
i—i

22 
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s1n~tThe term A1
e can be eliminated from the above N + 1 linear equations

by subtracting each equation in turn from the preceding one after multi—

plication by e . This gives the set of N linear equations

R[(n — r)~~t]— e R j ( n — r— 1 )~~t]

N—l —r
~
Cs1+1 1 ( 

—S~~~t 
_5

k+l~
t

— e  e 
k~l~~~ 

—e
i—i

S n~ t
• A ~+1

e~~~ ; r = 0,l, .. ., N — i. (3.18)

5
2

L1~~t
from which the term A2 

e can be eliminated by the same procedure.

The result is

s
1~t ~2~~’R(( n - r) ~

t] - R(( n - r - 1) ~ t )  (e + e ) + R [ ( n - r - 2) ~~ t]

f 
5]~t~t 52~t\ s2~ t }~—2 — rA t s 1+2 2

1e e l — e  e
/ i—i

( _
~t~~ +~~~\ 

Si+2fl
~~
t

—e ) A e  ,

r 0,1,2, . . . , N — 2 . (3.19)

Sn1~t
If this process is continued until all N of the A~ e are

eliminated , the result is

N
R((n — p

~ 
At) — 0 (3.20)

p—0 p

where the N + I. values of a are the exact same appearing in the

• algebraic Equation (3.4b). Since the Z~ are defined as

siAt -

Z1 — e  

23
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s1At
then the a

1~ 
are sums and products of the e . For example if N — 3,

then (3.4b) is written

3 sA t  s A t  sA t
a - 

(z 
- e 1 - e 2 

) 
(z 

- e 2 - o
p—0

and , thus the a’s are i 
-

~3~~~1

s1At ~~~ 
s
3
At

a2 = —e — e — e
s
1
At 

~~~ 
S~~At s

3
At s2At s

3
At

e +e e +e e

s1
At s

2At s
3Ate e

Hence, Equation (3.20) is an alternative way of writing Prony ’s difference

Equation (3.Sb). Corrington writes the difference equation as

N
— R (nAt) 

~ 
R[(n — r~) At]; n ~ N (3.21)

p 1 .

which, if the a’s are known, expresses the repsonse at some time n in

terms of N previous time sampled values of the response.

3.2 Prony ’s Method for Multiple Poles

For the most part electromagnetic antennas and scatterers possess

only simple poles. However, Tesche [23J has shown that a dipole can be

resistively loaded in such a way as to make it critically damped , that

is, to have a double pole on the negative real axis. Multiple poles

also result in the transient response of a system if the system is

driven by a signal which itself has a multiple pole. The most co~~on

example of this would be a system excited by a ramp waveform. The

H 24
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ramp waveform has a double pole located at the origin. It is shown in

this section that Prony ’s method can be used to extract these multiple

poles without knowing a priori that they are present.

The general form of the transient response for a system containing

both multiple and simple poles can be written as

N ( 
M~ -

~~

R(t) — ~ ~l + ~ t~~
1 

B 
~ 

P(M
i
) ~ A~, e (3.22)

i—i ’. 3— 2 )

where

P(M~) — 0, if M
i 

< 2

P(M~) = 1, if M~ > 2

and where M~ is the multiplicity of the i
th pole. For example, if the

jth pole is a double pole, then M~ = 2 and P(M1) — 1. In discrete data

form, Equation (3.22) can be written

N 
( 

M~ . s (n—r)At
R((n — r) At] 

i~1~~
l
~~ j~ 2 

[(n — r) At]3 1 B
3~ 

P( M
iJ 

Ai e

r 0 ,l,2,. . ., L

(3.23)

where L is the total number of poles if each pole is taken N1 times.

If as for the simple pole case

- sLAt11 e

• then an algebraic equation can be written

(Z - Zi)~~ 
— a ~

m 
- 0 . (3.24)

i—i m 0
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It is shown that the L Equations (3.23) can be reduced to give Prony ’s

difference equa t ion

L

~ 
a1~ R[(n — in) At ]  0 . (3.25)

m.mO

This difference equation is derived in the same manner as in Section 3.1.3

except for one small difference. As before, each equation in turn is
s1At 

- 
-

subtracted from the previous one after multiplying it by e . This
S

~tep is repeated Mi times and then e is used. This can be best

demonstrated in the following example.

Let the response be

2 ( M
i s (n—r) At

R[(n — r) At] = 1 + ~ [(n — r) At]3 1  B .1 P(M~)~ A1 e ;
i=l

L 
3—2 )

r = 0,1,2,3

and if At = 1, M — 2, N = 1, then,

s1(n—r) s2
(n—r)

R[n — r] (A + Bt) e + C e

-
: 

- r = 0,1,2,3 . (3.26)

Note here that the constant B is simply the product B21A1. If one uses

the method of Section 3.1.3, the four Equations (3.26) are reduced to

the three

— 

~1 
5
1
n —rs

1 
92n —rs2R(n — r ) — e  R (n — r — 1 ) 3e e + C e  e

(l-e 1 e 2)

26 
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S
1n —rs~ —S1 —rs

R ( n — r — l ) — e  R ( n — r — 2 ) — B e  e e + C e  e 2

—s —2s s
• (e 2 — e  2 e 1) ,

s1n —rs
1 ~

2slR(n — r — 2 ) — e  R ( n — r — 3 ) — B e  e e

~2n —rs2 
_2s

2 ~~ ~1+ C e  e •(e — e  d ).

- (3.27)

Since the pole 
~l 

was a double pole, the step is repeated by multiplying
Siby e again. The two resulting equations are

s
1 2s

iR(n — r ) — e  R ( n — r — 1 . )— e  R ( n — r — l ) + e  R ( n— r— 2 )

s
2n —rs2 S

) S
~ 

_2s
2 2s1C e  e (1 — 2 e e + e  e ) , (3.28a)

2s
iR(n - r 1)

:: e
8
~~~e
:
~~2 

:~;: 2 ::;~; :~: + e :3s2 e251).
Finally, the difference equation is obtained by multiplying (3.28b) by

e and subtracting from (3.28a). The difference equation is thus

s s s 2s s s
R(n — r )  — (e 1’ + e 1 +e 2) R( n — r — l ) + (e ~

‘ + 2 e 1 2 ) R ( n — r — 2 )

25i ~2— (e e ) R(n — r — 3) — 0 . ( 3 . 2 9 )

From (3.29) the a’s of (3.25) are

a3 1

~L ~l ~2• a2 
— — e — e —

- - 2s
i s

1s2a1 e + 2 e

e .
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This example shows that although there were only two distinct poles the

difference equation for the response was of order three producing four

coefficients.

In the above example, it was shown that Prony ’s difference equation

is also valid for transient responses containing multiple poles. The

order of the difference equation does increase from N to L thus requiring

L + 1 values of a to be solved for. Once the L + 1 values of ~ have

been determined, then the next step is to find the L roots of the poly-

nomial (3.24). If Muller ’s method is used for finding the L roots of

the polynomial, it does indeed return an individual root as many times

as its multiplicity requires. Therefore, after finding the roots of

the polynomial, the roots are scanned to see if any appear more than

once, indicating the presence of a multiple pole. Hence, it is possible

to proceed with Prony ’s method to the point of finding the poles with-

out knowing if there are multiple poles present or not. After the poles

and their multiplicity have been determined , then the problem is to

calculate the values of the residues.

The calculation of the residues is done by solving the equation

N ( M~ ‘

I s .nAt
R (nAt) = 1 + ~ (nAt)

3 1  B 
~ 
P(Mi) ~A1 

e 1 n = 0,1, . . . (3.30)
i—1 ( 3—2 J

which differs from- Equation (3.2) because of the presence of the terms

(nAt )3’~~. This fact causes the matrix Equation (3.10) to be changed by

multiplying certain colunins by multiples of (nAt). For example, if

from the previous example,

U —- - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~ _______ ~~~~~~~~~~ - -  - ~~~~~~~~~~ ~~~~~~~~~~~~ - 

~~~~~~~~~~~~~~~~~~~~
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s1At - -

Z1 e

S
Z2 — e

Z3 — e

then the resulting matrix equation to be solved in order to find the

coefficients A, B, and C of (3.26) is

[
~:2 2:t:

:
2 z32] [

~ ] 

= 

[ 
::::: ] 

•

where column 2 has been changed because of the presence of the term Bt

in (3.26). The next example shows that this necessity to alter certain

columns of the matrix leads to instabilities in the solution process.

As a more complicated example of a system with a double pole con—

sider the transient response

R(t) 3.0 + 7.0 t + 6.0 e 3t cos(4t — ~r/6) + 4.0 e 3t cos (6t + ir/3)

(3.31)

which is plotted in Figure 3.1. Note that the second term in (3.31) is

a ramp response which is very dominant in the plotted transient response.

This ramp tern gives rise to a double pole at the origin. When Prony ’s

method was applied to these data, the extracted poles and residues in

Table 3.1 were obtained. Note that the extracted poles are all within
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Figure 3.1. Response containing a double pole at the origin.
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0.08 percent of the original poles and that the double pole was indeed

found. However, the residues that wE re recovered do not compare with the

true residues at all. The residues do not even fall in complex conjugate

pairs as is required. This is undoubtedly due to the fact that the first

matrix was altered , as discussed in the previous example, in such a way

as to make it ill—conditioned. The important point in this example is,

however, that the double pole was extracted from the transient response.

3.3 Numerical Examples

In using Prony ’s method, as in the use of any numerical routine,

several guidelines should be followed in order for the method to work

accurately and quickly. For the most part , these guidelines were ob-

tained after running several examples on the computer and studying the

results. Therefore, this section presents several numerical examples

which point out the problems and guidelines which one must follow for

the successful use of Prony ’s method.

In this section, for all but one example , the data analyzed are

from the transient response of the current on a 1.0 in long dipole with

a half—length—to—radius  ratio of 100. The data were obtained using a

• numerical time—domain computer code [241. The antenna was modeled

using sixty equal—length segments and the exciting field was a Gaussian

pul se which was appl ied ac ross the center two segments of the antenna

2 2model. The Gaussian—pulse—time variation was exp(—a (t — t
max

) ) with

a, the Gaussian spread parameter, equal to S x lO~ S
1 and t equal

to 5.556 x io lO s. The induced current at the center of each of the

sixty segments was calculated for 500 time steps , where the time step

size was At = 5.556 x 10~~ s. Note that

L 
—

6O x C
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where L is the length of the structure, i in, and C is the speed of light.

In order to calculate the complex resonances of the structure , the cur-

rent on one of the center or source segments is used. This current is

plotted in Figure 3.2.

The study of Figure 3.2 reveals several facts about the dipole re-

sponse. The most apparent is the damped oscillatory behavior of the cur-

rent. The initial spike, which is a maximum at t — lOAt , is themax

Gaussian driving function being applied. This spike is followed by an

immediate negative spike which decays toward zero until time equals 6OAt.

The response from time 0 to 6OAt is very similar to the response of an

infinite long dipole. This response is expected since the current which

propagates down the antenna and gets reflected back from the end is not

seen at the center of the antenna until 6OAt. Thus, the current at the

center of the antenna is not affected by ‘the length of the antenna until

the current has propagated to the end and back. —

Example 1

The first example of the application of Prony ’s method is shown in

Figure 3.3. Of the 500 current samples available, only eighty sampled

values were actually used. These eighty samples were taken from the

first 160 current samples at every second time step. Figure 3.3a shows

the range of the current which was used to fill the matrix of Prony ’s

difference equation. Prony ’s method was solved using the standard in—

version technique. Thus, since eighty sampled values were used , forty

poles and residues were obtained. Figure 3.3b shows the left half of
I-

the s—plane in which the forty extracted poles have been plotted .

Figure 3.4 shows a comparison of the extracted poles with the true even

poles of the dipole as calculated by Tesche (5]. As can be seen only

~~ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Figure 3.3. (a) Data window used in Example 1.
(b) Locations of extracted poles in Example 1.
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eleven pole pairs correspond to the true poles of the system leaving

eighteen poles which have no relationship to the system. The fact that

only the first ten even poles were generated is not surprising if one

considers the original model. The original model was a thin—wire

• approximation and was driven with even symmetry by a Gaussian pulse.

Because of the thin—wire model and the width of the Gaussian pulse, the

expected spectral response has an upper frequency limit of about 10 L/X

[25), where L equals the antenna length. The resonances for a dipole

occur at approximately X /L — 1/2 , 3/2, 5/2, . . ., thus , with the upper

frequency limit of 10 L/X not many more than the first ten even reso—

nances can be expected . The extra eighteen poles appear for two reasons.

In Protty ’s method , if the least squares approach is not used, when 2N

sampled values are used the method returns N poles. Thus, Prony ’s

method is forced to return more poles than are present in the system.

Also, since the Gaussian—pulse driving function is only a model of a

delta function,then the response function is not a true impulse response

but is a response of the form of (2.8). Since the g(t) term of (2.8)

was not removed , the extra poles present are needed to represent it.

Figure 3.5 demonstrates how well, the transient response was modeled with

these forty poles and their associated residues. Note that 1000 time

steps were generated when only the first 160 of the original time steps

were used to generate the poles. This shows how Prony ’s method can be

used to extrapolate late time data ftom a small set of early time data.

Figure 3.6 is a three—dimensional plot of the second quadrant of the

s—plane showing both the position and the amplitude of the poles. The

- 

. length of the vertical lines represents the amplitude of the poles on

a logarithmic scale. The amplitude of the true poles tapers off as the

~~~~~~~~~~~~~~~~~ - -  H
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Figure 3.5. Reconstructed transient response using extracted poles
of Example 1.
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frequency increases because the amplitude of the Gaussian driving function 
- 

-

in the spectral domain also tapers off as frequency increases. It should

be noted that the amplitudes of some of the extra poles are equal to or

greater in -magnitude than those of the true poles. These extra poles with

the large amplitude are the poles which are predominantly representing

the driving function.

Example 2

As a second example only the first sixty samples of the response

are used. This sampling interval is only large enough to contain the

response resembling the infinite wire, Figure 3.7a. - The resulting poles

are plotted in Figure 3.7b. Note that none of these poles are the true

poles of the system but that the sampled portion of the response is

accurately reproduced using these poles, Figure 3.8. Also , note that

only twenty—five poles are plotted in Figure 3.7b when thirty were ex—

- - pected. This is due to the fact that the program was written so as to

eliminate any right—half—plane poles that appear. In this case, five

poles with positive real parts were removed before the residues were

calculated. This example points out the necessity to include some por—

tion of the oscillatory part of the response. It was found that at

least one cycle of the lowest frequency present must be used. Thus,

the sample interval of example 1 is the minimum which can be used to

obtain the true poles of the system.

Example 3

This example also takes sixty samples but the time step size is now ‘

3t~t thus giving a sampling interval of the required size, Figure 3.9a,

and requiring the return of only thirty poles as opposed to forty in the

first example. The twenty—eight poles that were found are plotted in

L - 
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— Figure 3.7. (a) Data window used in Example 2.
(b) Locations of extracted poles in Example 2.
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Figure 3.9. (a) Data window used in Examp le 3.
(b) Locations of extracted poles in Example 3.
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Figure 3.9b. Note that the true poles appear while the extraneous poles

have been reduced in number. The extra poles still must appear because

of the presence of the driving function in the transient response.

Figure 3.10 points out another problem inherent in the solution of the

matrix equations without the use of a least squares technique. Since

twenty—eight poles were found, it was necessary to solve for twe1ty—

eight residues using the matrix Equation (3.10). O~~y- -th~~ f1rst twenty-

eight samples of the curre~t— rV~~eded to fill the vector F of (3.l0a) .

- 
Thus, the resulting response is expected to be accurate at only the first

twenty—eight time steps. This is represented in the plot of Figure 3.10.

The obvious correction to this problem is to use more samples to fill

the vector F by using the least squares method . An example of this

approach will be presented later in this section.

Example 4

The Nyquist criterion [26] states that the sampling rate of a tran—

sient response must be at least twice as fast as the highest frequency

present in the data in order to be able to resolve that frequency. That

is, the sampling rate I
~
tN 

is

where is the highest frequency desired. In the previous example the

time step size was 3t~t — 1.6668 x 10—10 s. Hence, the highest frequency

which could be expected was 2. 9998 x l0~ Hz or -
~~~~~ 

— 19. 9984 which

is indeed just higher than the highest frequency pole obtained. Figures

3.11 and 3.12 also demonstrate this phenomenon. In Figure 3.lla the

time step size is 4At — 2.2224 x io ’~ s and the resulting frequency

44
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(b) Locations of the resulting poles .
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limit is ~.iL/c-Ir — 14.99. The highest pole frequency obtained is 14.80.

Likewise in Figure 3.12a the time step is SAt 2.778 x lO
_10 

s giving

a frequency limit of 11.999 and the highest frequency pole obtained is

11.4. Thus, in order to obtain the highest frequency pole that is co.~—

tam ed in the data one must sample the transient response at at least

the Nyquist rate.

In all of the previous examples no attempt was made to remove the

influence of the driving function, the Gaussian pulse, from the response

function. Thus, poles have been present which were required to fit the

g(t) term of Expression (2.8). Since the driving function is a Gaussian

pulse, it cannot be modeled exactly with a finite number of poles but

can be assumed to go to approximately zero for some value of time t0.

Hence, if the response function is sampled after time t0, the g(t) term

should be zero. Also , since the analytical form of the spectrum of the

- 

- Gaussian pulse is known, it can be easily removed by deconvolution.

The following examples demonstrate the result of using the above two

I approaches for removing the influence of the driving function from the

response function.

Example 5

Figure 3.].3a shows the response function starting at time step number

sixty—one and taking sixty samples at every third time step. The start—

ing point of to 6lAt was selected for two reasons. First of all, by

the sixty—first time step the Gaussian driving function value is well

below the zero value of the computer. Also , as was mentioned earlier,

the true oscillatory respor.se of the structure does not begin until the

current has propagated to the end of the structure and returned to the

center at time t
0
. The sampling interval of 3At was chosen so as to
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satisfy the Nyquist criterion. Since sixty samples were used , the method

attempted to return thirty poles. As can be seen from Figure 3.l3b , only

twenty—six poles were actually recovered , four , in the right half plane,

were thrown away. Of the twenty—six returned, only twenty—two are the

true poles of the system. Thus, even though the driving function was

removed , extraneous poles are still present due to the fact that more

than the twenty—two true poles were required from the matrix inversion

process. This would suggest that the best procedure would be to use a

least squares approach and search for only twenty—two poles.

Example 6

The deconvolution approach is demonstrated in Figure 3.14. The 512

samples of the transient response have been transformed to the spectral

domain using a fast Fourier transform routine. This spectral response

was then divided by the spectral response of the Gaussian pulse and

the result was transformed back to the time domain. Figure 3.l4a shows

the first eighty samples of the deconvolved response taken at a time step

size of 2At . Several things can be noticed from this figure. First of

all, the very large spike at about t — 0 is the delta function which is

always present in the impulse response. Also , high frequency ringing is

present in the response which is not in the original transient response.

This high frequency ringing is due to Gibbs’ phenomenon which is inherent

in the deconvolution process. The forty poles that resulted from these

eighty time samples are plotted in Figure 3.14b. This pole pattern is

very similar to that of Figure 3.4. The one major difference is apparent

in Figure 3.15, which is a three—dimensional plot of the pole pattern show-

ing the amplitude. Note that the amplitude of the true poles does not taper

off with high frequency as it does in Figure 3.6 because the dependence

50
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on the driving function has been removed by the deconvolution process.

The extraneous poles still have fairly large amplitudes because the delta

function at the origin was included. There are several disadvantages

to performing a deconvolution to remove the dependence of the driving

function. The main disadvantage is the large amount of computation time

needed . Several stages of calculations must be performed which cost

time and accuracy and cause errors such as the Gibb ’s phenomenon. In

general, the deconvolution process should be avoided if at all possible.

In all of the above examples the extraneous poles were present be—

cause the number of time samples that were used dictated the number of

poles to be determined. Also in the above examples , errors in the re-

produced signals resulted because in calculating the N residues only N

time samples were used. These two problems can be overcome by using the

least—squares error approach described in Section 3.1. This approach

allows one to use many time samples to determine just a few poles thus

permitting one to select beforehand the number of poles to be determined.

Examples 7 and 8 demonstrate the advantages of the least—squares or

pseudo—inverse solution over the conventional procedure.

Example 7

Figure 3.l6a is a plot of the sampling interval which is used in

this example. Note that 120 samples were used at a sampling rate equal

to the Nyquist rate for the problem, 3At. The first twenty samples in

the interval include the driving function so the resulting poles must

be expected to include poles representing the driving function. For this

example only twenty—six poles were asked for, thus allowing for the

twenty—two poles which were known to be the true poles of the system and
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for the four extra poles needed to represent the driving function ’s con—

tribution. Figure 3.l6b is a plot of these poles and , indeed, the eleven

true pole pairs, which were expected, appeared along with two extra pole

pairs. The interesting point here is that although only twenty—six poles

and residues were extracted they were determined using a total of 120

samples as opposed to fifty—two samples which would have been used if —

the conventional approach had been employed . Figure 3.17 demonstrates

-
- - how the error is equally distributed over the entire range of the 120

samples as compared to the error of Figure 3.10 which is near zero for the

first twenty—eight samples and then increases for later time.

Example 8

In this example, Figure 3.18, the first sixty time samples have been

neglected . Thus, the g(t) term is eliminated from the response function

and only the true poles are expected. A total of 150 samples were taken

at a rate of 3At and only twenty poles were sought. Figure 3.l8a shows

that the resulting poles are the true poles of the system. Note from

Figure 3.l8a that as frequency increases the pole pattern diverges from

a sweeping curve. This indicates that there is more error in the higher

frequency poles due to the lower signal level at those frequencies.

Note that the frequency w stays stable arid that the real part of the

pole a is most sensitive to the noise.

Examp~l e 9

In all of the previous examples transient data , which were generated

using a time—domain computer , were used. In this example actual experi—

mental data are studied. The experimental data were generated on the

transient electromagnetic measurement range at Lawrence Livermore

Laboratory [11]. The response is that of a 1.0 m monopole located on
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(b) Locations of resulting poles.
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a ground plane and excited by an approximation to a Gaussian—pulse plane

wave. The diameter of the monopole 1.s 0.3175 cm. The antenna is loaded

at its base with a 50 0 load and the voltage across this load was measured

with a sampling oscilloscope. A total of 512 samples were measured at a

time interval of At 0.4 x 10 10 
s. Of the 512 measured values only 100

samples at every fifth—time step were used. Figure 3.19 shows this 
- 

-

measured response in terms of the current through the load. The 100 cur—

rent samples were used with Prony ’s method and forty—one poles and residues

were produced. Nine poles, which were in the right half plane, were

ignored. Figure 3.20 is a plot of the generated poles found in the second

quadrant of the complex plane. The first thing that is apparent about

these poles is that they fall along a curve running parallel to the imag-

inary axis. This is typical of the pole locations for a dipole as seen

from the previous examples. The frequencies of the first nine poles in

this layer correspond to the first nine complex resonant frequencies of

a 1 ni monopole. The real parts of these poles seem to oscillate around

the correct value because of the sensitivity of the real part to the

noise in the data. Even though the response was measured on a sampling

scope, the data were very noisy and no attempt was made at smoothing.

The fact that the remaining poles do not correspond to physical poles

again relates to the fact that the pulse used did not contain frequency

components higher than that of the ninth resonance. Also , since no

attempt was made to remove the contribution of the driving function ,

these extra poles are needed to model that portion of the response. The

pole sitting on the real axis close to the origin is probably due to the

fact that there was a late time dc level present due to the pulser used

- 
- in the measurement system.

—U ~~~~~~~~~~ - -U’ ~~~~~~~~~~~~ - ~~~U ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - _______ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
-



-- - -U--U-U-- -—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

2.56

2 .14

(.70

1.28

0.85

0.42 -

0.0

< -0.42 -

E
-0.84

— 1 .2 8

— ( .70

-2.14

-2.56 - H

-299 
-

—3.42 
I I I I I I I I I I I I I I I I I I I — 

-

0.0 2.0 40 6.0 8.0 10.0 (2.0 (40 (6.0 18.0 20.0

ns

Figure 3.19. Original experimental data of Example 9.
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3.4 Guidelines

The previous section presented nine examples which demonstrate many

of the aspects of Prony ’s method. Contained in those examples are guide-

lines which should be carefully followed when using the method . Since

the guidelines were somewhat obscured by the numerous examples, they

will be repeated in this section as a su~ nary for ready reference.

3.4.1 Sampling interval

The width of the sampling interval should be selected so that it

is wide enough to contain all of the characteristics of the response.

For the most part , the interval should be at least as long as one period

of the lowest frequency present. If a least squares method is employed,

then the length of the sampling interval should be as long as is eco—

nomically feasible.

3.4.2 Sampling rate

All physically obtainable transient responses will be bandlimited

and thus the upper frequency limit should be determinable. The sampling

rate should then be , by the Nvquist criterion , slightly more than twice

the highest frequency expected .

3.4.3 Removal of the influence of the driving function -

The influence of the driving function on the response function should

be removed or accounted for by using one of the processes described in

Section 2.2. The two easiest processes to use consist of either a driv—

ing function that can be represented by known poles or a driving

function which is time limited . If a time—limited driving function is

used , sufficient response samples must occur after the turnoff time of
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the driving function so that the required number of poles may be determined .

In an experimental system where this may not be practical, the driving

function should be representable by a sum of sinusoids. Deconvolution

should be avoided because of the expense and the increase in the error

level.

3.4.4 Least squares versus conventional matrix inversion

The least—squared error or pseudo—inverse approach should always be - -

used. This allows as many samples to be used as one desires and allows

for the selection of the number of poles without being dependent on the

number of samples used. This method gives better results in calculating

the residues since more input samples can be used.

3.5 Problems Associated with Prony ’s Method

The-re are two major problems associated with Prony ’s method which

need to be overcome in order for the method to be practical. The first

problem is the fact that it is necessary to know the number of poles N

which are contained in the transient data before Prony ’s algorithm can

be applied. The second problem is that Prony ’s method is extremely

sensitive to noise of any kind. These problems are discussed here and

solutions to these problems are presented in the next two chapters.

The numerical examples of Section 3.3 indicate that if one asks

for more poles than are effectively contained in the data then the

algorithm generates a number of extraneous poles in addition to the ones

that compare to the true poles. The presence of the extraneous poles

causes the residues of the true poles to be inaccurate and results in

unnecessary computation time. Similarly, if one underestimates the

number of poles,-then many of the returned poles may substantially
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deviate from the true poles and, in most cases, the true poles will not

be returned at all. Thus, a systematic approach for an a priori deter-

mination of N would be extremely beneficial. The examples showed that,

if the upper frequency limit is known and if the approximate values of

the poles are known, one can make a good estimate of the value of N.

Also N could be determined by trial and error but that would be very

expensive. The next chapter presents two straightforward and systematic

schemes for determining N.

The other problem with Prony ’s method is the sensitivity of the

poles to a noisy set of data. The real part of the poles is extremely

sensitive to noise. If the noise is too bad , then Prony ’s method will

not return any of the true poles and will a t tempt  to curve—fit  to the

noise. Therefore , it is necessary to determine the noise limitations

for Prony ’s algor ithm and to determine ways of preventing and reducing

noise. This problem is handled extensively in Chapter 5.
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4. THE DETERMINATION OF THE NUMBER OF POLES (N)

In the last chapter it became obvious that in order to use Prony ’s

method optimally a systematic approach must be developed for determining

the number of poles contained in the transient response. This chapter

develops two techniques by which the number of poles inherent in the H

system can be analytically determined. The first approach discussed

was developed by Householder (27]. His derivation is presented here ex—

cept t hat it is applied to the least squares solution. The second ap—

proach is new and is shown to have several advantages over Householder ’s

method.

4.1 Householder Orthogonalization Method

- It was shown in Chapter 3 that if a set of discrete transient re-

sponse data could be represented as a sum of N complex exponentials then

the discr ete samples Ii must satisfy a difference equation of order N.

Consider now the following vectors which are filled with the data

samples I
~

10 Ii 
Ii

11 - 
12 1i+l

10 12 , i1 13 , . . .p i i (4.1)

- 

~~+l 1y+i
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where the ~~~ vector is the i — 1th colusm of matrix (3.8b) in Chapter 3.

Since the I~ satisfy Prony’s differe~tce equation of order N, (3.5b),

then so must the vectors i~. Now if y > N , then any N, or fewer , of the

vectors i~ will be linearly independent and any N + 1 of the vectors will

be linearly dependent. Hence, the difference equation can be written

i3
ct
0 + i

1
c&
1 + . . . + i~~cz~~= O  . (4 .2)

The next step is to apply the Gram Schmidt or Choleski orthogonalization

process to the vectors i~.

The orthogonalization process-consists of replacing each vector

by a linear combination of the vectors i0, i1, . . ., i~. The new ortho-

gonal vectors are denoted as a0,a1, . . ., a1. The steps are then

a0 i0

a i  — u  a1 1 1 0 0

where is chosen so as to make a
1 
and a0 orthogonal . That is ,

Ti
1a0

~lO T
-- 

- 

a0a0

where 30
T is the transpose of vector a0. Then proceeding to the second

vector

a i — u  a — u  a2 2 21 1 20 0

where again u21 and p20 are selected so that a2 is orthogonal to both a0
and a1, which means that
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1
a0 i2LI2O~~~~~—~ -

0 10

Ta
1 i~

21 T

Continuing this process, one finally obtains

aN l  * 
~N—l 

— 1
N—l,N—2 

aN_2 + • + 

~‘N-1 , O a0

where

aN 2  iN i
~N—l ,N—2 TaN..~2 aN 2

Ta
0 iN— i -MN—l,O Ta0 a

0

Le t V~, A~ and M
i designate the matrices

V~ = (i0,i1, . . .,  i~) (4.3)

I(a0, a1, . . ., ai) (4.4)

Li 10 p
20 ~iø

0 1 LI21 Uj,1

Mj = 1 . (4.5)

~ 
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Then,

V1 — A~ M~ (4.6)

which is the Gram—Schmidt procedure in matrix form. Since M
i is a

• triangular matrix, it is easily inverted so that

a 
~~~~ M~

’ 
. (4.7)

The difference Equation (4.2) can now be written as

V
N 1  °N 

— 

~N 
(4.8)

where

-

a

1

a (4.9)

aN I

Equation (4.9) is equivalent to Equation (3.6) of Chapter 3. Now if a

pseudo—inverse approach is used to solve Equation (4.8) then the re—

sulting expression is

V~~1 VN 1  °N - V~~1(—i 5) . (4.10)

From (4.6)

VN 1  — AN 1  MN 1  (4.lla)

- M~~1 ~~~~ 
(4.1db)
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so that (4.10) can be written as

~~-l ~~-l AN-i ~~~~ 
c~ - 

~~~~~~~~~ ~~~~~~ 
(4.12)

Let

A~~~~~
1 

AN_ i = DN 1  (4.13)

where the matrix DN 1  is a simple diagonal matrix because AN 1  and A N l
are made up of orthogonal vectors. Now define the vector

~i 1

LI
1 

= . (4.14)

~
p
i,i_1 -

so that the orthogonalization process can be written

ii+1 a1~~ + A. (4.15)

or by multiplying both sides by 4

4 i~~1 - 4a .+i + 4 A~ u~~~ . (4.16)

Since all columns of A
1 are orthogonal to aj+1, then

4 i~÷~ - D~ ~1+i 
(4.17)
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where D~ has replaced the product 4 A~. If Equations (4.17) and (4.13)

are substituted in (4.12), then

[~
_1 DN_l] 

MN 1  °N [M~_1 DN 1]  
LIN

( l )  . (4.18)

Since the bracketed terms on each side of (4.18) are nonsingular matrices,

they can be removed by multiplying both sides by their inverse. Hence,

(4.18) reduces to

MN 1  °N LI
N 

. (4.19)

To summarize, the and a
~+1 

are calculated sequentially by using

the Gram—Schmidt procedure, Equations (4.15)and (4.17). The vector

a~÷1 is adjoined to Ai to obtain A141 and matrix Mi is bordered by Lu 41

and a unit row vector to obtain Mi+i. Note that each vector ai41 ~

the component of i141 that is orthogonal to the space of the previous

i’s. Since the vectors i~ must satisfy a difference equation of order

N, then iN is a linear combination of the preceding i’s and aN should
vanish. Thus, in order to determine the value of N, the above process

should be continued until one of the vectors a vanishes. However,

since the time samples are subject to measurement errors and roundoff

errors, it should not be expected that any vector a will vanish entirely

but for some N there will be an aN which will be negligibly small.

Once a negligibly small vector aN has been found, it is a simple

procedure to find the coefficients a of the difference equation. The

coefficients a are found from (4.19). Note that the matrix MN 1  is a

triangular matrix so that the vector a
N 

may be found by back substitution ,

eliminating a matrix inversion. Thus, this process not only gives a

method for determining the number of poles N in the system but also
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allows one to actually find the N poles without having to invert a

matrix. Note also that this method can use as many time samples as de-

sired by selecting the appropriate value of y in (4.1).

As an example of this procedure, a set of test transient data was

produced using the set of six pole pairs listed in Table 4.1. For all

the poles the accompanying residues were taken to be one. The resulting

transient response is plotted in Figure 4.1. Householder ’s method was

carried out exactly as outlined above. The value of y which was used

was 100. Figure 4.2a is a plot of the average of the absolute value

of the first thirteen vectors i~ and the resulting orthogonal vectors

a1. Note that while the average of the first thirteen vectors i~ stays

constant the first twelve values of a1 drop off slightly until at the

thirteenth vector the value drops by four orders of magnitude. While

this thirteenth vector did not go to zero, it did drop low enough to

indicate that the thirteenth vector was linearly dependent on the pre-

ceding twelve vectors. The difference equation coefficients were calcu-

lated as per Equation (4.19) and the resulting poles are listed in

Column Two of Table 4.1. Note that the resulting poles are essentially

the same as the original.

As another test of the above procedure, the same transient response

was used but normally distributed noise with a standard deviation of

0.005 was added to the response. Again y was set equal to 100 and the

resulting vectors ai and i~ are plotted in Figure 4.2b. Notice now

that at the thirteenth vector the average value does not drop off. This

indicates that the Householder procedure is not applicable to systems

with significant noise. When the poles were found for the noise case,
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Figure 4.1. ~Transient response resulting from the six pole pairs
of Table 4.1.
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they were not associated with the true poles at all, as indicated by the

third column of Table 4.1. Chapter 5 shows that the alternate procedure

for finding the poles, which is presented in the next section, does in—

deed work in the presence of noise.

As a further example the numerically generated transient response

of the current on the one meter dipole discussed in Section 3.3 is used.

The samples were taken at every third time step starting with time step H

t~
.

sixty—one. Figure 4.3a shows a plot of both vectors 1 and the resulting

orthogonal vector a. Mote that, while vector i has an average which is

somewhat constant, vector a drops off until vector number twenty—three

where it stays level for a while. This is interesting since in the ex—

ainples of Section 3.3 it was shown that eleven pole pairs appeared to

be the optimal solution to this example. Indeed, when the process of

(4.19) was applied using the twenty—third orthogonal vector, the first

eleven poles in Figure 3.4 were obtained . Note that the twenty—third

vector a is four orders of magnitude below the twenty—third vector 1.

In Figure 4.2a of the previous example,the thirteenth vector a was also

four orders of magnitude below the thirteenth vector 1. This implies

that when the average of the orthogonal vector drops four orders of

magnitude below its accompanying response vector then that vector is

the first dependent vector.

ir~ Figure 4.3b the vectors a and I are plotted for the dipole case

c~-sidered above,but since the samples start at tine step one, the

.-tvtn ~ function is included . Note that none of the twenty—nine a

.. ~~ -• .  i~~~. ‘or.~ than one order of magnitude below the vector i. This

- s ic, the Gaussian pulse included in the first sixty samples

- -P’-- 45 a finite sum of exponentials.
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Figure 4.3. Value of the average of the absolute value of the
vector a and i for the response of the 1.0 m dipole.

(a) Data window starting at time step sixty—one.
(b) Data window starting at time step one .
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4.2 The Eigextvalue Method for Determining N

To start this development , it is again necessary to form the vectors

of Section 4.1. Note that the v1 
can be written as

N snt~t
V
1 

= ~ A~ e n — i,i+l, ., i + y (4 ,20)
j= 1

or by separating terms

N s i~t s n ~ t
v~ = ~ (A e ) e n 0,1, . . . . (4.21)

j=l

Expression (4.21) can be written as

N
v~ — ~ C~ 

~ 
(4.22)

j—l

where

s i~t
e (4.23)

is the coefficient for the ~th mode vector starting at the ~th time

step. Remembering that

S t~t

z = e ~~ (4. 24)

then the ~th mode vector is

I 
-

Z~ - 1

-

- 

z
.~
. z

i

- - . (4 .25)

~
‘
~
‘ z

_
Y’

— 
__ _J
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If there are N poles in the system, then there will be N mode vectors

11’
j

•

The next step is to solve the difference equation

N

~ ~~~~ a = 0 . 
- 

(4.26)
m 0

If a pseudo—inverse solution is used, then (4.26) would appear in matrix

form as
- 

V0 V1 . . - V V0 V1 . . . VN 00

V
1 V

1

= 0  . (4.26)

VN ~
‘N+y “~y ~

‘N+y aN

Matrix ~‘ is defined as the product of the above two matrices. Note that

the 1th ~th element of the ~ matrix is

= V
j 

(4.27)

where 1,~T is the transpc-.se of vector v~. Substituting (4 23) into (4.27)

gives

N N r ~
~ [c~~ 

C
tjJ 

lili ~‘m (4.28)
& 1  m l

where the * indicates complex conjugate. Since ~ is a matrix of order

N + 1 by N -I- 1, it will have one eigenvector which will be orthogonal

to the N mode vectors. That is, there will be one eigenvector such that

• EN+l 0 (4 . Z 9)
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where EN+l is the eigenvector orthogonal to all of the modal vectors.

The eigenvalue corresponding to this eigenvector is zero. If matrix

• was made to be 2N there would be N eigenvectors orthogonal to the N

modal vectors and there would be N eigenvalues equal to zero. Hence,

the process for determining the N of the system is to fill matrix •

to some dimens ion M by M. The corresponding M eigenvalues of the

system are found and checked to see if one or more is equal to zero.

If there are L eigenvalues equal to zero , then N would be equal to M — L.

If L is not equal to one, then the matrix • is recomputed to order

N + 1 by N + 1 and the eigenvalues regenerated. Equations (4.26) and

(4.29) show that the eigenvector corresponding to the one zero eigen—

value is the vector of the coefficients of the difference equation.

Thus, not only are the number of poles found, but the poles are found

at the same time.

As the first example of this procedure, consider again the tran—

sient response of Figure 4.1 which was generated using the six pole

pairs of Column One of Table 4.2. The thirteen eigenvalues of this

system, which were generated using a value of y = 100, are plotted in

Figure 4.4. Notice the very sharp drop between the number twelve and

the number thirteen eigenvalue. The twelve poles that resulted from

- - 
the elgenvector corresponding to the thirteenth eigenvalue are listed

in Column Two of Table 4.2. The resulting poles are in good agreement

with the original.

As a further test of the above procedure , the same transient data

were used but normally distributed noise with a standard deviation of

0.005 was added. The value of ~y was set to 100 and the resulting

thirteen eigenvalues are plotted in Figure 4.4. Note that the drop
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between the twelfth and thirteenth eigenvalues is only slightly more than

one order of magnitude, indicating that the noise has a gross effect on

this procedure. the poles that were recovered from this noisy case are

listed in Cc-’.u t  Three of Table 4.2. Although the values of these poles

are not precisely the true poles, the maximum percent error is only 1.5.

When this fact is compared to the fact that some of the poles of Column

Three of Table 4.1 are not even in complex conjugate pairs, the conclusion

indicates that this procedure will work with noisy data. The next chapter

will show that the eigenvalues are also a function of the noise

level. 
-

As a final example of this procedure again consider the transient

response data of Figure 4.1. Samples were taken at every third time

step starting at time step sixty—one. Tests were run in which twenty—

one, twenty—three, and twenty—five eigenvalues were determined and the

corresponding poles were extracted . Figure 4.5 shows plots of the

twenty—three eigenvalues and twenty—five eigenvalues and Figure 4.6

plots the poles for the twenty, twenty—two, and twenty—four pole cases.

For the case of twenty—two poles, the poles correspond to the first

eleven poles plotted in Figure 3.4, while for the case of twenty poles

the upper frequency poles vary significantly. The case where twenty—

four poles were evaluated gives two poles that do not form complex con—

jugate pairs and the eleventh pole pair does not correspond to the

eleventh pole pair of the twenty—two pole example. This indicates that

the case where twenty—three eigenvalues were generated is the proper

solution and should be studied. Notice that in the plot of the twenty—

three eigenvalues the eigenva].ues drop off continuously until the
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twenty—third without any significant jump, except possibly between

twenty—two and twenty—three. This is probably due to the fact that the

residues of these eleven pole pairs drop off significantly as frequency

increases. Because of this lack of a significant breakpoint , it appears

that this technique is not as well suited to determining the value of N

for systems which have transient responses similar to the response of

this example.
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5. NOISE AND ITS RELATIONSHIP TO PRONY ’S METHOD

In the preceding chapters several allusions were made to the fact

that noise seriously affects the values of the poles extracted by Prony ’s

method. In Chapter 3 it was pointed out that if the noise level is high

enough Prony ’s method will return poles that are not even remotely as—

sociated with the true poles being sought. This effect can be understood

if the noise is thought of as being several arbitrary frequency corn—

ponents added to the signal. Thus, the true exponential nature of the

signal has been corrupted. Since Prony ’s method is an interpolation pro—

cess, it will give a set of poles which fit the noisy transient response

but will not necessarily be the n~tural resonances. The least squares

• approach is used to reduce some of the error and to allow more data

samples to be used. This chapter shows that the least squares approach

when applied to Prony ’s method does not strictly give a least squares

fit. If the noise level is known, it can be used to aid in the deter—
*4;

mination of the number of poles N using the eigenvalue process of

Chapter 4. Statistical studies are presented which relate the noise

levels to the quality of the results obtained.

5.1 Least Mean S~uared Error Approach

Up to this point the least squares approach has been applied blindly

by simply performing a pseudo—inverse solution . This was done primarily

to allow for more transient data points to be used when solving for a

set number of poles. This section studies the way in which the least

mean squared error process reduces the errors that are present in the

transient data.
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Consider a set of transient response data which has been sampled

at M equally spaced intervals ót. These M sampled values k~~~, a~~. • •

are assumed to be estimates of the true response of the system

R0, R1, • • . ,  R~ where

N s n~tR = R ( n~t) = ~ A . e n 0, 1, . - . ,  M . (5 . 1)
i~’l

I

The measured sampled values differ from the true values R because

of errors in measurements, noise, etc. It i5 known that the R satisfy

Prony ’s difference equation of order N which may be written

Rfl+N + cI
N l  Rfl+N_l + . • + a1 R

.~~1 
+ R = 0; ~ a 0 ,1, . . ., M

(5.2)

In Chapter 3 it was shown that the pseudo—inverse or least squares solution

to (5.2) could be written in matrix form as (3.8a)

AT A B A T C (5.3)

or

~~B D  (S.4a)

where

j~ O 
k~ . . 

~~~~ 

R~ Rj+ N l

AT A 

~L ~~~ ~ 
- R~÷1 Rj+ N l

j~ 0 ~ ~~~ 

Rj+ N 1  k~~ 1 . . 
~~ ~j+ N-l Rj +N~l

86 (5 .4b )
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a
0

a1 (5.4c)

aN l .

N+j

D AT c R~~1 N+j (5.4d)

— 

- 

Rj+N~l RN+j3.0

The y of (5.4b) and (5.4d) must be greater than 2N — 1 and less than

M — N — 1. Even though Equations (5.4) are formed in accordance with

1 the usual least squares approach, the usual assumptions do not hold.

Since the are subject to errors, both the left side and the right

side of (5.4a) are formed by noisy elements. In the normal least

- 

- 
squares app roach, only the unknown quantities ni are assumed subject to

error. Thus, when the pseudo—inverse procedure is applied to Prony ’s

method , it does not yield an optimum least squares approximation since

the H samples k do not represent exactly a sum of N exponentials;

- t  
that is,

-

~~~
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N s~~t
(5.5)

i—i -

where c is the error in the ~th measured time sample. If t~ equals

zero, then the pseudo—inverse is the optimum least squares approximation.

Householder (27] developed a method by which the N parameters cz~

could be determined such that the sum of the squared error

S = ~~ w(R — ~~)2 (5.6)

is minimized subject to the fulfillment of the side condition (5.2).

The multipliers w are the statistical weights associated with the

measured values f t .  Householder ’s procedure is an iterative procedure

involving Lagrange multipliers. The method is repeated several times

until the results are within the accepted tolerance level. The method

is very labo r ious, and if more than j us t  a few po les are sough; it is

totally unwieldy. In 1966,McBride, Schaefgez~ and Steighlitz (28] and,

in l968,McDonough and Huggins (16] developed two different linear iter-.

ative schemes which appear quite successful for determining the poles

even for large N. The methods, however , were developed for synthesizing

a prescribed transient response using a sum of N complex exponentials.

It was not required that the poles found be the true waveform poles,or

indeed, it was not required that the waveform even have N poles . Hence ,

these methods are also not satisfactory for the requirements here, that

is, finding the N true poles from a set of noisy transient response data

of a system having precisely N poles.

The next section presents a method by which the poles of a system

can be extracted from noisy data using an eigenvalue approach similar

to that prei~ented in Section 4.2 .
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5.2 Determination of the Poles from Noisy Data

In this section the approach in Section 4.2 is applied to tran-

sient responses containing noisy data. Consider the transient response

vector v~ of (4.23) to include noise such that

N
• v~ = 

~~ C4 
~ ~~ 

+ (5.7)
ia]. ~~‘

• where is the noise vector starting at the ith 
time step.

ci

= £ i+l . (5.8)

£
Y+i

Assume that the values of noise vector are due to a random process

and are normally distributed with zero mean and variance c2. The

definitions of 
~~~~

, the ~th mode vector, and the coefficients C
i i  

are

precisely those of (4.25) and (4.24), respec~ively. As before, if

there are N poles in the system then there will be N mode vectors

The next step, as in Section 4.2, is to solve the difference equation

N
• I (5.9)

If a pseudo—inverse solution of (5.9) is attempted, the set of Equations

(4.26) is obtained. If the noisy transient response vectors are
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• substituted into the matrix • of (4.27), the following result is obtained

• for the 1,1
th 

element of matrix • ‘ , where the prime indicates that the

matrix was formed using the noise vector

(5.lOa)

~~~ m~l 
~~~~ ~~~~ ~~ ~~~~ 

~~ 
~~~~ n

i l

÷ I [C n~ ] q,~ + (ri~ f l . ]  . (5.lOb)
t~l 

3

Since the term [r~ ni l is the product of the transpose of the ~th noise

vector times the noise vector and since any two noise vectors are

unco rrelated , then

[n~ ni l = 0 , I 
~ 

j  (5.lla)

i = j  ( 5.llb)

where y is the length of the response vector v~ and the length of the

noise vector n1 . Hence , this te rm gives rise to a matrix which is zero

everywhere and has a value of ~ 
~2 on the diagonal, or more precisely

written,

2H y~~ I (5.12)

• where I represents the identity matrix. The second and third terms on

the right side of (5.lOb) are each zero since they are the product of

the noise vector and the natural mode vector which are uncorrelated and

L•~~ _ _  _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _



of zero mean. The first term is left which is precisely the $ of (4.28).

This term is the product of the L and natural mode vectors. Thus,

0 ’ 0 + H (5.13)

where 0’ is of order N + 1 by N + 1.. Matrix 0’ will have N + 1 real

eigenvectors of which one eigenvector will be orthogonal. to the N mode

vectors ‘~m~ 
That is,

E~~~~~# O  ,

— 0 , 9. > N (5.14)

where E~ is the transpose of the 9.th eigenvector. Hence,

2 
EN+l (5.15)

since 0 EN+l — 0 and matrix H can be thought of as the constant y ~
2.

Thus , (5.15) implies that the eigenvalue associated with the N + 1th

elgenvector is just y which is y times the variance of the noise.

This is similar to the result of Section 4.2 where the eigenvalue

thassociated with the N + 1 eigenvector is zero for the noise—free case.

The procedure for determining the value of N is then the same as that

outlined in Section 4.2 except that matrix 0’ is filled until it has an

eigenvalue equal to y a2 instead of zero. Likewise the N + 1th eigeu—

value, which is orthogonal to all the mode vectors, is the vector con-

taining the N + 1 coefficients c&.~ of Prony ’s difference equation. Thus,

once the eigenvalue equal to y a2 is found, the poles can be found from

• its corresponding eigenvector.

91



-~

The next section applies this procedure to several examples.

Different noise levels are used in order to statistically determine the

poles’ sensitivities to various noise variances.

5.3 Numerical Examples

Example 1

As the first example of the method developed in Section 5.2, a

single undamped sinusoid is used. The transient data were produced at

200 time steps using the relation

R(nt~t) — sin(itn~t)~ n 0,1, . . ., 199

where i~t — 0.1 s. Noise of different levels was added to the data samples

R(n~t). The noise was produced by using a pseudo—random number gen ator

on a digital computer to produce uniformly distributed noise. The uni—

formly distributed noise was then transformed into normally distributed

noise with zero mean and a standard deviation of a. For each different

value of a, the entire pole extracting process was repeated twenty times

with twenty different sets •of random numbers. That is, twenty Monte Carlo

trials were performed for each standard deviation of the noise. From

these twenty trials expected values of the poles were calculated along

with the variance of the poles. The expected value of the N + 3 eigen—

value and its variance were also calculated. Table 5.1 shows the percent

error of both the real and imaginary parts of the poles produced for

different values of a. The percent error was calculated as

RIST — 
S
Et •

Percent error (real part) — —

s.

I S  — S E LPercent error (imaginary part) — — T
s
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where S
T is the true value of the complex pole (in this case ST 

— 0 + js)

and 5
E is the calculated expected value of the extracted poles for a

particular noise level. Also tabulated in Table 5.1. are the standard

deviation of the extracted poles, the theoretical value of the N + 1th

eigenvalue (i.e., y a2) ,  the mean value of the calculated N + 1th eigen—

value, and the signal—to—noise level in decibels. The signal—to—noise

level was calculated by taking the log of the square of the average of

the absolute value of the signal over the time window of length yAt

and dividing by the variance of the noise ~~ That is

~~~ jj(iAt) 2

i~0S/N(dB) — 10 log 2a

For this first example the average of the absolute value of the signal

is 0.63137 for all time because the signal is undamped. The values of a

for the noise used ranged from 0.5 to 0.01 or in terms of signal—to—noise

level from 2.0 dB to 36.0 dB. Note that the percent error of the real

part of the poles is more sensitive to noise than is the imaginary part.

Note also that the theoretically predicted value of the N + 1th eigen—

value is extremely close to the calculated value of that. eigenvalue.

This example indicates that the poles can be extracted from data when

the signal—to—noise level is as low as 2.0 dB. If the standard deviation

of the extracted poles is studied for the 2.0 dB case, the results do

not look very good. Note that for the imaginary part of the pole the

standard deviation is 0.796 which is extremely high when it is remembered

the value of the pole is just IT. The standard deviation of the pole at

the 16.0 dB level, however, is much smaller indicating that the chance of
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Figure 5.1. Transient waveform used in Example 2.
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extracting the true pole is much higher at 16.0 dB than at 2.0 dB. This

result will be further substantiated in the next example.

Example 2

For the second example the same sinusoid as in Example 1 was used

but now it is exponentially damped. That is,

R(nAt) — e 2 0
~
t
~
t sinOtnAt) n — 0,1, . . ., 199

where again At — 0.1 s. This waveform is plotted in Figure 5.1. A value

of y — 50 was used in this example since after fifty tine steps the

waveform has essentially damped to zero. Table 5.2 shows the results

of several statistical tests on these data using a standard deviation

of the noise ranging from 0.04 down to 0.001. it was found that if a

is greater than 0.04, a signal—to—noise level of 3.3 dB, the expected

values of the two returned poles were not even complex conjugates of

- 
each other. Thus, when the signal—to—noise level was worse than 3.3 dB ,

Prony ’s method was completely corrupted by the noise. Note in Table 5.2

that as the signal—to—noise level gets better the standard deviation

of the poles lowers. It appears that at around 15.0 to 20.0 dB the per—

cent error and the standard, deviation of the poles are at a tolerable

level, which is,of course, subject to the requirements of the problem

being studied. Notice in this example, as in Example 1, that the

theoretical value of the N + 1th elgenvalue compares closely to the cal—

culated mean value. In all cases the theoretical value is slightly

lower than the calculated mean value.

Exam~le3

For this example the transient response of Fi gure 4.1 in Chapter 4 1
was used. The six pole pairs and their associated amplitudes are
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TABLE 5 .3

AMPLITUDE OF EACH POLE COMPONENT FOR EXAMPLE S 3 AND 4

Po le Amplitude Amplitude
Examp le 3 Example 4

—0.082 ± j 0.926 1.0 1.0

—0.147 ± j  2. 874 1.0 0.5

—0.188 ± j 4.835 1.0 0.25

—0.220  ± j  6.800 1.0 0.125

-0.247 ± j 8.767 1.0 0.0625

-0.270 ± j  10.733 1.0 0.03125
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TABLE 5.6

THE THEORETICAL AND EXPERIMENTAL VALUES OF THE
N + 1 EIGENVALUE FOR EXAMPLE 3 AND EXAMPLE 4

- 

- Standard Theoretical Mean Value of Standard Deviation
Deviation of Value of N + 1 of N + 1

• Noise o N + 1 Eigenvalue Eigenvalue
• Eigenvalue

0.01 0.02 0.0218 4.92 x

Example 0.008 0.0128 0.0139 3.15 x iO’~~3
0.005 0.0050 0.00546 1.23 x lO~~

• 0.003 0.0018 0.00197 4.43 x lO’~~

0.001 0.2 x 0.22 x i0 3 4 .92  x 10~~
Examp le 0.002 0.8 x ~~~~ 0.871 x 10~~ 1.96 x

4
0.001 0.2 x 1O~~ 0 218 x 10~~ 4.93 x lO~~

• 0.0005 0.5 x 1O~~ 0 .546 x 1O~~ 1.23 x 1O~~
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..tabulated in Table 5 3 Note that for this example the amplitude of

each pole is the same. Noise with standard deviation from 0.01 to 0.001 ,

giving a signal—to—noise level from 27.4 dB to 47.4 dB, was added to the

signal and statistical tests were run on the data. For all cases a value

of y 200 was used and the number of Monte Carlo trials was twenty.

Table 5.4 shows the results of these tests. For this pa r t icular signal,

poles could not be extracted for levels of noise greater than o = 0.01.

That is, for noise levels greater than o 0.01, poles were produced

but they did not appear in complex conjugate pairs and had no apparent

relationship to the original poles.

Since the total waveform was made up of the sum of six damped

sinusoids , it is useful to stud y the signal—to—noise ratio for each of

the six individual components. Table 5.5 shows that for  the case of

o 0.01 with a total signal—to—noise ratio of 27.4 dB the highest

frequency component has a signal—to—noise ratio of only 14.8 dB. This

level is about the same as the level in Examples 1 and 2 where the poles

could be extracted at a signal—to—noise level of about 2 to 3 dB, but

• in this example the highest signal—to—noise level of an individual com-

ponen t i s , as stated above , 14.8 dB. Hence , indications are that sum—

ming several signals together in effect  makes it necessary to have a

better signal—to—noise ratio to allow extraction of the poles. This

point is further demonstrated in Example 4.

The values of the N + 1th eigenvalues calculated in Example 3 are

tabulated in Table 5.6. Note here, as in the previous two examples,

that the mean value of the eigenvalues is very close but always slightly

higher than the theoretically predicted values. In all cases it was

found that the Nth eigenvalue was sufficiently distinct from the N + 1th
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eigenvalue so that proper identification of the cutoff point could be

made. For example in the worst case, t:hat of o 0.01, the N +

eigenvalue has a mean value of 0.0218 and the Nth eigenvalue has a mean

value of 0.070. Thus, if the standard deviation of the noise is

• 
~• known in advance, there should be no problem in detecting the cutoff

point which gives the value of N.

Exa~p)~~4

For the final example the same six pole pairs of the previous example

were used but the amplitudes of the poles were reduced as indicated in

Table 5.3. The resulting transient response curve is shown in Figure 5.2.

Here again a value of y 200 was used and twenty Monte Carlo trials were

performed. Table 5.7 shows the results of noise with o 0.002, 0.001, V
and. 0.0005. The noise level at which the true poles could be first de-

tected for this example is o 0.002 which corresponds to a signal—to—

noise level of 39.7 dB. This level is far higher than any needed in the

previous examples, and is due to the fact that some of the components

of the signal have very small signal levels. Table 5.8 gives the signal—

to—noise level for each of the six components in this example. Note

that the hi ghest f requency has a si~znal—to— n oise level of —1.3 dB which

indicates that the noise level is hig her t han the average signal level.

However, the signal must have been above the noise level for a significant

portion of the data window in order for it to be detected. The standard

deviations of the extracted poles for the o = .002 noise level indicate

that the method is not accurate enough at this level and indeed does not

appear to be accurate until e noise level of a — 0.0005 is reached . At

this level the highest signal—to—noise level for any single component
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Figure 5.2. Transient waveform used in Example 4.
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TABLE 5.7

VALUE S OF EXTRACTED POLES W1T~1 THEIR PERCENT ERROR AND
STANDARD DEVIATION AS A FUNC TION OF
SIGNAL TO NOISE RATIO FOR EXAMPLE 4

Signal to Noise Ratio 39.7 dB 4 5 .7  dB 51.7 dB
___________________________ ___________ ____________ ____________ 

Original

Standard Deviation 0.002 0.001 0.0005 Poles 
-

•

of Noise a

—0.0809 —0.0814 —0.0817 —0.082
—0.1493 —0.1452 —0.1459 —0.147

- 
‘ 

- Real Part of Poles —0.3629 —0.1793 —0.1848 —0.188
—0.1483 — 0.2036 —0.2159 —0.220
—0.3109 —0 .2823 —0.2565 —0 .247
—0.2315 —0.2700 — 0.27 19 — 0 .270

0.9220 0.9251 0.9256 0.926
2.8675 2.8726 2.87 34 2.874

Imag inary Part of Poles 4.9708 4.8293 4 .8342 4.835
6.7206 6.8173 6.8065 6.800
8.6936 8.7688 8.7686 8.767

10.6593 10.7108 10.7271 10.733

0.12 0.06 0.03
0.08 0.06 0.04

Percent Error 3.61 0.18 0.07
Real Part 1.05 0.24 0.06

0.73 0.40 0.11
0.36 0.0 0.02

0.43 0.09 0.04
0.22 0.05 0.02

Percent Error 2.80 0.12 0.02
Imaginary Part 1.16 0.25 0.09

0.84 0.02 0.02
0.68 0.21 0,05

0.0113 0.0054 0.0026
• 0.1034 0.0415 0.0200 

- ,

Standard Deviation of 0.8509 0.0600 0.0300
Real Part of Poles 0.1000 0.0371 0.0175

0.4254 0.1871 0.0785
0.0834 0.0470 0.0231

* 0.0310 0.0120 0.0057
0.0382 0.0120 0.0055

Standard Deviation of 0.1797 0.0585 0.0283
Imaginary Part of 0.4604 0.1237 0.0616
Poles 0.3860 0.0632 0.021].

0.2846 0.1225 0.0535

105



- ,•-‘•— ~
v—•,•—_ • —

r

TABLE 5,8

SIGNAL TO NOISE RATIO OF TIlE DIFFERENT COMPONENTS
OF TH E SIGNAL IN EXAMPLE 4 AS A FUNCTION

OF THE STANDARD DEVIATION OF THE NOISE

Standard 0.002 0.001 0.0005
Devi ation of
Noise a

_____________________ 

Signal to Noise Ratio dB

Sum of Below 39.7 45.7 51.7

—0.082 ± j  0 .926 38.9 44.9 50.9

Portion of Signal —0.147 ± j  2 .874 28.1 34.1 40. 1
Due to Particular
Pole —0.188 ± j  4.835 19.9 25.9 31.9 •

—0.220 ± j  6.800 17.9 23.9 29 .9

—0.247 ± j  8.767 5.5 11.5 17.5

—0.270 ± 3 10.733 —1.3 4 .7  10.7
C 

• f
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is better than 10 dB. Table 5.6 shows that here again the mean value

of the lowest eigenvalue is always slightly higher than the theoretical

value.

Suimnary of Numerical Examples

Four different numerical examples were studied to determine the

effects which noise has on Prony ’s method and to see if the value of N

could be found from the eigenvalues. In all cases the mean value of

• the calculated N + 1st eigenvalue was slightly higher than the theoretical

value of y ~
2. It was also found that the N + 1St eigenvalue was suf-

ficiently different from all others of lower order so that it is possible

to identify it. For all four examples a different highest value of

tolerable signal—to—noise level was obtained. However , in all the

examples the best results were obtained when the signal—to—noise level

was between 1.0 and 20 dB for the lowest level component of the signal.

The examples indicate that different tolerable noise levels will P

be found for different shaped waveforms. One definite conclusion is

- that if the noise level is higher than the signal level over the entire

data window then that signal or its accompanying pole will not be de—

tectable. These examples also indicate that further study should be -

‘

done with experimentally obtained signals containing truly random noise.
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6. APPLICATIONS

Now that the techniques for properly applying Prony ’s method have

been developed it is of interest to study some of the electromagnetic

applications of this method. There are four major areas to which the

extraction of poles from a transient electromagnetic signal can be of

great benefit. These are: system analysis, radar target recognition ,

the study of spectral characteristics, and data reduction and extrapolation.

These four applications are discussed in some detail in this chapter.

6.1 System Analysis

6.1.1 Response to various exciting waveforms

In circuit theory after the impulse response is known, the response

of the circuit to any given driving function can be determined by mul—

tip ly ing the Laplace transform of the driving function by the sum of

poles and their corresponding residues of the impulse response. That is,

N A
R( s) — F(s) Z (6.1)

i=l s S
i

where R(s) is the resulting response function and F(s) is the Laplace

• transform of the driving function. In Chapter 2 it was shown that a

similar relation is true for electromagnetic structures. The differences

are that since antennas and scatterers are distributed systems the im-

pulse response is a function of position on the structure and a function

of the incident angle of the driving function. Note that the pole portion

of the impulse response is independent of position but that the natural

modes are functions of position and the coupling coefficients are functions

of the incident angle. Thus, the general response function for an antenna

or scatterer can be expressed as
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N A
~
(r)P)

— F(s , r ,p) 
~~ 

— 

— (6.2)
i—I. i

where the coupling coefficients ~1
(s
1,p) and the natural modes v .G)

have been combined into the one term , ~~~~~~~ Since the poles s1 are

invariant of position , they may be determined by studyi ng t he impul se

response at any position on the structure . Af ter  the poles have been

evaluated , the residues A~ must be dete rmined at eve ry desired point

on the structure. This however is not a d i f f icul t  problem. Thus , the

poles of a structure need only be extracted once and the residues must

be dete rmined at each position that the response is desired and for

each angle of incidence that the driving function will be applied. As

an illustration consider the following example.

Consider that the induced current at several positions , e.g., H,

on a dipole due to several differen t time—varying broadside incident

plane waves is desired. The f i rs t  step is to determine the induced

current at all H desired positions on the structure resulting from a

broadside incident impulse plane wave. It will actually be necessary

to use a narrow Gaussian plane wave as an approximation to the impulse.

The true impulse response can then be obtained by using one of the

methods outlined in Section 2.2. After the impulse response of the

induced current is obtained , then the poles of the structure can be ob—

tam ed by applying Prony ’s method to the current at one of the H points

on the structure. Now that the polea have been determined, the M

sets of residues are calculated for the M positions on the antenna,
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thus giving one set of N poles and M sets of N residues Ai
(r ,p). The

induced current for an arbitrary broadside incident waveform is then

obtained by applying (6,2). If an incident angle other than broadside

is required, then it is necessary to recalculate the M sets of residues

fo r an incident impulse plane wave at the new incidence angle. This

seems a horrendous amoun t of calculations but when compared with the

amount required to completely resolve the problem for each incident wave

shape it is really a very small amount.

6.1.2 Compatibility with circuit theory

In practice antennas are almost always coupled to some sort of

circuit or network. This presents a problem to the circuit designer

because the antenna port is not classified as a lumped element. This

problem is usually not severe since the network and antenna are gen—

erally designed to operate at one given frequency . In this case the

antenna port can be characterized by a lumped impeda nce at that one

f requency . If , howeve r , the antenna is to be operated over a broad band

of frequencies the circuit designer must know the antenna’s terminal

characteristics over that  entire band . The characteristics are normally

obtained from a set of graphs relating the real and imag ina ry par ts of

th e input admittance to the frequency. Obviously, this is not an ideal

situation. The circuit designer would like to have the antenna’s input

impedance given to him in the Laplace transform domain. This is a pos—

sibility if Prony ’s method is used. All that is necessary is to apply

a time—varying voltage to the antenna terminals and to measure the re—

sulting current as a function of time. If Prony ’s method is applied to

the current and a set of poles and residues is obtained , then the input

admittance can be expressed as
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Y( s) — V( s) (6.3)

where V(s)  is the Laplace t ransform of the applied voltage. Expression

(6.3) is obviousl y much easier for a circuit desi’gner to use than a

set of complicated graphs or tables.

6.1.3 Study of system parameters

It is quite useful to know what effect the loading of a structure

has on the positions of its poles in the complex plane. Likewise it

is beneficial to know what effect the positions of the poles have on

the behavior of the transient response. If trajectories of the poles

could be determined from a few experimental cases, it would be possible

to predict pole locations as a function of loading. Once the pole lo—

cations are known then the transient waveforms can be constructed. One

practical example of this problem is the resistive loading of a linear

antenna in order to produce a transmitted field which simulates an

electromagnetic pulse. Tesche [23] has approached this problem by de—

termining the pole locations of a dipole which is loaded with uniform

resistive loading along the antenna. He produced the trajectories of

the poles by the “classical” frequency domain search procedure. An

alternative approach is to obtain the time—domain solutions for the

induced currents on and the scattered fields from several uniformly

• resistively loaded dipoles. Prony’s method is applied to either the

transient response of the induced currents or the scattered fields in

order to determine the location of the poles. The results of such a

procedure are given in the following example.

ill

____________ ____________ ________________ 
____________________________
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A 1.0 cn dipole with a half—length—to—radius ratio of 100 was

numerically modeled and excited by a broadside incident Gaussian pulse.

The induced current at the center of the antenna and the back scattered

electric field was calculated as a function of time for uniform resistive

loading of 0, 125, 25O~, 500, 750 and 1683 0/rn. These currents and fields

are shown in Figures 6.1 and 6.2, respectively. The time step size used

was ~t = 6. 9444 x 10
_il 

s. The loading value of 1683 0/rn was chosen

because Tesche [23) calculated that 1683 0/rn is the , value at which the

dipole would become critically damped, giving a double pole on the neg—

ative real axis. The poles that were extracted using Prony ’s method are

plotted in Figure ,6.3. The trajectories of the first seven even poles

are shown. Note that for the value of 1683 0/rn the first pole has split

and moved toward the origin and toward infinity , which indicates that this

value of loading does not give a critically damped dipole but produces

an overdamped situation. This does not imply that Tesche ’s calcula ted

value of 1683 0/rn is incorrect. All that is indicated is that this nu-

merical modeling procedure and Tesche’s numerical modeling procedure

differ. It should be noted, however, that the point at which the pre-

dicted trajectory of the first pole in Figure 6.3 splits is approximately

the same value which Tesche indicates in his paper.

One very interesting point in the above example is that for even

the overdamped transient response Prony ’s method was capable of ex—

tracting the first five poles of the system . This is a very important

point since if the 1683 0/rn case in Figure 6.1 is studied it appears tha t no

oscillations occur. Yet Prony ’s method was capable of determining the

first five modes including the splitting of the first pole. This example

then indicates that Prony ’s method will work with heavily loaded structures

and with fat or thick structures.
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6.2 Radar Target Recognition

The problem of electromagnetic recognition of a radar target has

received a great deal of attention in recent years. To recognize a

target with a single—frequency radar requires, in principle, bistatic

scattering cross—section information for a single transmitter aspect

angle and for 4,r steradians. In practice, with a priori information

about the body, it is feasible to match a body to one of a known group

of bodies using a somewhat smaller angular range. With multiple..-frequency

monostatic radar cross—section information available over a limited

angular range, it is possible to identify a body as well [29]. Theoret-

ically, the monostatic reconstruction requires information over 4it

steradians and an infinite frequency range.

Recent work indicates the feasibility of using short—pulse (impulse

response) excitation in a monostatic configuration for purposes of target

recognition from a class of bodies [30) — [31].

In the first of these schemes, reported by Sperry Research Center,

information about the body is contained in the time—history of the

backscattered waveform, i.e., a time signature. This technique is com-

plicated by the fact that the time signature is dependent on the aspect

angle of the target. The result is the requirement of a rather large

catalog of known signatures.

Mains and Moffa t t  (31] introduced the concept of using the complex

natural resonances of a target as a basis for target recognition. They

make use of the fact that a few natural resonances of a body are adequate

to distinguish the body within a finite collection of bodies. They also

make use of the fact that the natural resonances of a body as manifested

in a scattered waveform are aspect independent: they do not depend on

116

- ~~~~~~~ • • —~~~__~~~~~~~~~~~ -- - - .•~~~~~~ -— - -•- ~~~~~~~~~~~~~~~~~~~~~~~~ —



- — - -

- 
- —

the angular orientation of the target. They justif y thi s fact empirically

in [31). Baum , who introduced the Singularity Expansion Method (S~ 1)

[1) — (2 ] ,  has rigorously demonstrated this aspect independence in the

context of the SEM method.

Thus , this method provides a convenien t means of 1) characterizing

a transient scattered waveform in terms of a few coefficients and complex

resonant frequencies in a series of decay ing sinusoids , and 2) separating

aspect—dependent characteristics of the waveform from characteristics

intrinsic to the body. In particular, the complex frequencies of the

sinusoids in the series are intrinsic to the body while the amplitude

of the sinusoids depends on the wave shape of the excitation and on the

aspect angle.

Two significant practical features accrue from the use of the SEM

representation with primary attention directed to the complex frequency

qualities: 1) aspect dependence is suppressed and 2) the incident

wave shape need not be impulse — it needs only to have sufficient spectral

content to excite several of the complex sinusoidal modes.

Since Prony’s method can be used to numerically extract the weighting

coefficients and the complex frequencies from a digitized backscattered

time—signature, Pearson, Van Blaricum and Mittra (32] suggested that

the method be used to aid in the target recognition problem. The ex-

tracted frequencies (rather than the complete time—signature) would

serve as the input to a pattern—recognition algorithm. This method is

believed to represent a significant improvement over direct time—history

pattern recognition because the aspect—dependence is suppressed and

because the frequencies comprise a smaller set of numbers than the

entire sampled tine—signature.
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A block diagram for the recognition procedure is given in Figure

6.4. The system consists of a transmitter, a receiver capable of

digitizing the transient return, and a digital processor with some con-

venient operator conununications device such as a CRT. Of course, a

tracking system and an antenna/duplexer are present.

The waveform generator must produce a transient waveform with

reasonably broad spectral content. The power and frequency requirements

are, of course, dictated by the application. In particular , target

range requirements and receiver performance determine a power specifi-

cation, while the body size determines frequency. The frequency must

be such that f — c/D with D a characteristic dimension of the class of

targets and c the velocity of light. An alternative to a transient

source and receiver is a multiple—frequency pulsed carrier scheme such

as Mains and Moffatt suggest [31]. This scheme uses CW scattering re-

turns to synthesize the transient response of the body .

The transient digitizer provides a means of detecting, sampling,

and digitally expressing the transient return signal. In its simplest

form, this element might be a storage oscilloscope with A—D converters

on its vertical and horizontal drive signals. There are other more

sophisticated systems available consnercially.

The digital processor must be able to perform the following

operations: a) extract the poles of the waveform by using Prony’s

method ; b) identify (based on data designed into the system) poles due

to the transmitted wave shape and to the RF system; and c) conduct a

pattern recognition procedure to provide a set of “likelihood votes”

associating the target with a catalog of expected targets. The first

item above is self—explanatory.
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Any waveform that can be radiated is oscillatory in character

and will accordingly have associated with it at least one “waveform

pole.” For example, a sinusoidal segment will possess a pole at s — jw 0,

where is the radian frequency of the sinusoidal signal. In addition,

it is conceivable though undesirable that the receiving antenna and R.F

hardware might introduce poles into the waveform representation. All

of these “system” poles are known during system design, however, and

it is a straightforward algorithm to locate and delete them from the

set of poles extracted from the signal. An alternative approach is to

numerically deconvolve the waveform spectrum and system transfer function 
L

from the received waveform.

The final process is to compare, by means of some pattern analysis

algorithm , the observed pole set with a data base of known targets ’

poles. This algorithm would display, as its output , a “vote” or prob-

ability for a known target or targets. This information could be sup-

plemented by an indication of recognition confidence, for example, the

number of poles successfully used in the identification. A second sup—

pleinentary output might be tracking data on the target.

For this method to be successful as a target identification scheme ,

a few poles (say less than ten) must characterize a given target among

all potential targets. Mains and Moffatt [31] discuss this problem in

some detail and present the pole configuration for several thin—wire

geometries to indicate that a few poles do distinguish among similar

objects. Also, another criterion for this system to be successful is

a satisfactory signal—to—noise level of the returned time—signature so

that Prony ’s method can properly extract the poles. Berni [33] has
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suggested an identification technique, which is also based on Prony’s

algorithm, although Prony ’s method , as such , is not mentioned in his

paper. His approach is to use a series of exciting pulses which then

produces a series of response functions which are correlated to produce

what he calls a “target correlation matrix.” His correlation matrix

is similar to the ~ matrix of Prony ’s method of Section 4.2. The dif-

ference is that his correlation matrix is filled with samples from

several different sets of transient response data while that of Prony ’s

method uses just one set of transient response data. Berni’s approach

may thus prove useful in reducing the noise level and some of the signal—

to—noise ratio problems outlined in Section 6.3. It appears that the

use of Prony’s method as a tool for radar target recognition may be of

great importance but more study of the problem is needed in order to

satisfy many of the unanswered questions. -

6.3 Study of Spectral Characteristics

It has been pointed out already that after the poles and residues

of a system have been determined it is then possible to write the fre—

quency domain version of the system ’s response as

N A
R(jw) ~ — + — 

(6.4)
~~~~ ~. 

~~~~~~~

where the poles s~ have been written in terms of their real and imaginary

parts as

s~ a~ + j w1 . (6.5)

• Thus , the frequency domain response can be obtained directly from the

time domain response without having to perform a Fourier transform.
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The real advantage is that in order to perform a Fourier transform

accurately it is necessary to have a very long time history of the

transient response. That is, it is usually necessary to have enough

time samples so that the transient response has decayed to zero or to

its steady—state value. The examples of Section 3.3 showed that Prony ’s

method is capable of extracting the poles from a time window that is

extremely short when compared to the whole response.. Thus, if it is

too expensive to calculate or measure more than just a few transient

data samples, it is generally impossible to perform an accurate Fourier

transform, but if Prony’s algorithm is used, it is then possible to

extract the spectral characteristics from this narrow time window.

If the transient response is not the impulse response and the im-

pulse response or the frequency domain transfer function is desired ,

it is possible to perform the deconvolution after the poles have been

found. For example, if Prony ’s method gives a frequency domain response

function of the form of (6.4) and if the frequency domain response of

the driving function F(s) is known, it is possible to obtain the fre-

quency domain transfer function:

~ s~~
i
s

H( s) i 
(6.5)

Note the similarities between (6.5) and (6.3), the expression for the

input admittance of an antenna. If F(s) is the applied voltage at the

driving point and the Ai 
and the s~ are the residues and poles for the

induced current at the driving point , then H(s) is just the driving—

point admittance. Figures 6.5a and 6.5b show the imaginary and real
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parts , respectively , of the input admittance of the 1.0 in dipole discussed

in Section 3.3. The solid line represents the admittance obtained by

using the conventional Fast Fourier Transform, and the dotted line is . . 
-

the admittance obtained using Expression (6.3). Since the driving

function was a Gaussian pulse, it was possible to express its Laplace

transform F(s) analytically. Note that the two methods give results

that compare closely for all but the higher frequencies.

Similarly, if the normalized radar cross section of a scatterer

is desired, it can be obtained by using the expression

— 22 2 E (w)c w r rad
— —
2 2 —A 2ire E (w)

where the dependence on the incidence and observation angles and polar-

ization has been suppressed. The E’~(w) term is simply the frequency

domain response of the applied incident field and Erad (W) is the frequency

domain response of the scattered field measured at distance r from the

scatterer. Erad(~
)) can be obtained using Prony’s method on the calculated

or measured scattered transient response data.

When a conventional Fourier transform routine is used , the result

is always a set of frequency domain data points at a specified frequency

interval which is dependent on the time step size of the transient data

used. Many tines the study of the spectral characteristics at just a-

few select frequencies is of interest. If any of the analytical

Expressions (6.3), (6.4), (6.5), or (6.6) are used,it is possible to

calculate the spectral characteristics at any frequency desired.

Thus, if Prony ’s method is used, it is possible to obtain as few or as

many frequency domain samples at any frequency of interest , within the

bandwidth of the system.
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6.4 Data Reduction and Extrapolation

From the discussions and examples mentioned earlier, it is obvious

that Prony’s method takes a set of transient response data and reduces

it to a small set of poles and residues. These poles and residues can

then be used to reconstruct the transient response for all, time, in-

cluding those time steps past the end of the data window used. Hence,

Prony ’s method is a valuable method for data reduction and extrapolation.

Anyone who has ever generated transient response waveforms by numerical

or experimental procedures soon learns that the storage problem required

in keeping all of the data is very large. If Prony ’s method is used ,

it is not only possible to reduce the amount of data storage required

but it is also possible to reduce the amount of transient data produced

in the first place. The following example will demonstrate this adequately.

Consider again the experimentally produced data which were discussed

in Section 3.3, Example 9. The experimental transient range produced

512 data samples over the time window shown in Figure 3.18. Prony ’s

method was then applied to only 100 of these time samples at every fifth

time step to produce the forty—one poles shown in Figure 3.19. The forty—

one poles and residues were then used to reproduce the measured tran-

sient response and to extrapolate the measured response to very late - 
-

time, 100 ns. This reproduced response is shown in Figure 6.6. Thus,

using only eighty—two complex numbers , the original measured response

was reproduced and extrapolated to add additional information. Remember

also that only 100 of the original measured samples were needed .

Hence, a response can be measured for a fairly short period of time ;

then,Prony ’s method can be applied to the response to reduce it to a

set of poles and residues. The poles and residues can then be used to
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Example 9, Chapter 3.
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reconstruct the original data, extrapolate the original data to later

time values, and produce the spectral content by using the methods of

Section 6.3.

6.5 Other Applications of Prony ’s Method

This chapter dealt with applications of Prony ’s method for extracting

the singularities of a system from its transient response. There are

many other uses for  Prony ’s method which have been developed in the past.

These uses range from representation of electrocardiograms (17] to the

measu rin g of the vertical angles of arrival of HF sky—wav e signals (34 ] .  -

These applications are very interesting and for that reason an additional

bibliography is provided which lists many of the papers in which Prony ’s

met hod has been used . The techniques developed in this thesis could be

used to eliminate many of the problems discussed in the papers .

y 

-
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7. AN ALTERNATIVE TO t’RONY ’S METHOD

In previous chapters, Prony’s method has been the only technique

discussed for extracting the poles from a set of transient response

data. However, another approach, known as the Padé approximation method

[35], can be used. The Padé method will be discussed in this chapter

and will be shown to be extremely limited in its usefulness.

7.1 Padé Approximation Method

If the Laplace transform R(s) of the transient response function

R(t) is analytic at the origin, then R(s) can be represented in a Taylor ’s

series expansion about the origin. The Taylor ’s series can be denoted

by

R(s) r~ + r
1s + r2s

2 + . . - + rks
k 

+ ~~ r1s~ . (7.1)
i—k+1

A rational function in s can always be found such that its Taylor’s

expansion has the same leading terms as those of (7.1). This rational

function is known as the Fade approximant of R(s). The Padé approximant

is usually written in the form

2 m
P (s)  a0 + a1s + a2s + . . . + a s

2 N - ( 7 . 2 )
b0 + b1s + b 2 s + - . . + b~ s

Note that if the transient response contains exactly N poles then

Expression (7.2) is an analytical expression for the Laplace transform

of the sum of exponentials

N S t
R ( t )  

~ 
Ai e . (7.3)

i—i
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Note also that if the coefficients b
i of the denominator of (7.2) can be

obtained then it is a simple procedure to find the poles of the system.

All that would need to be done is to find the roots of the Nth order

polynomial

2 N
+ b1s + b

2s + . . . + b
N
st” 

~i~l 
(s — S

j
) 0 . (7.4)

The coefficients b
i of (7.3) can be obtained in the Padé approximant

sense by setting the first k + 1 terms of (7.1) equal to (7.2). That

is , let

2 ina + a s + a s  + .  • . + a s2 k 0 1 2 inr0 + r 1s + r 2s + . . . + r ks 2 N 7 5b0 + b1s + b2s + - . . + b~ s

where the value of k must be equal to in + N. If the denominator of the

right side of (7.5) is multiplied by the left term and like powers of

s are equated, the following set of equations is obtained .

a0~~~r0 b0

a1 r1 b0 + r 0 b1 (7.6a)

a ‘r  b + r  b + . .  . + r  bin m O  rn-l i O r n

r~~,1 b0 — r b
1 

+ • - . + r~~~~2 bN l  + r N+l bN

r~~2 b0 r~~1 b1 + . . . + r~~~~3 bN_l + r N+2 bN . (7.  6b)

r5~~ b0 — r
m~~~l 

b1 + - . . + r~~1 bN,l + r~ bN L 
-
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If in (7.6b) the b
0 terms are set equal to one, the N remaining b1 may

be solved in terms of the r i. Then the ai in (7 .6a) can be solved in

terms of the bi and the r i.

The remaining problem is the determination of the r1 which are the

coefficients of the Taylor ’s expansion of the transient response. These

can be obtained if the transient waveform is modeled with a set of step

functions u(t — t1) and a set of ramp functions, u 1
(t — t

i
). The step

function and the ramp function have Laplace transforms which are known.

These are

L(u(t - t . )]  = ~ e~~~~ (7.7a)

—St
L[u 1(t — t i) ]  = 

2 e (7.7b)
5

where the time t~, is the turn—on time for the step and the ramp functions.

Hence, if the transient response can be modeled with a set of step and

ramp functions, then its Laplace transform can be expressed as a sum of

the terms (7.7a) and (7.7b). As a simple example of the modeling pro-

cedure consider the portion of a transient response shown as a dotted

line in Figure 7.1. This response has been modeled as a sum of step

and ramp functions as indicated by the solid lines. The analytical time

domain expression for the model can then be written for this example as

R(t) — 1 3  u,,1(t) —1 3  u 1(t — 1 )  + 13 u( t  — 1 )

+ 3 u
1(t 

— 1) — 3 u 1(t — 2 )  — 8 u 1, (t — 2)  + • . . . ( 7 . 8 )
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Expression (7.8) then has a Laplace t ransform of -

R(s) _ q — ~~~~ e 5 + e 5 + L e”5

— 
~~

-
~~

- e 2
~ — !

~i 
e 2

~ + - . . + (7.9a)

whi ch reduces to

R(s) — + e_ s (  I + ‘U) + e ” 2
~ (~ 
I~ ) + . . + - (7.9b)

The exponential terms in (7.9) which result from the t ime shif t  have a

Taylor series expansion of

—t s (—t
i 

~)2 (— t . s)3 S

e — 1  + (_t
i 
s) + , + + . . . + . (7.10)

If this expansion is substituted into the expression for the Laplace

transform of the pulse and ramp models of the transient response, then

the response can be written in the form of (7.1). This expansion should

then be truncated to include only k + 1 terms as needed to solve the

set of Equations (7.6b). It is now a simple procedure to obtain the

unknown coefficients bi by solving (7.6b). - The poles are then obtained

as the roots of the polynomial (7.4) which has the coefficients b1
.

-
~ After the a~ have been solved for from (7.6a) , residues of the poles

can be obtained by performing a partial fraction expansion on the rational

function (7.2).

The above approach for finding the poles appears to be a simple

procedure but it will be shown in the next section that because of the

approximations made this technique is only useful for systems contain-

ing a couple of poles.
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7 .2 Examples of the Fade Procedure

Example 1

As the first  example of the Padé procedure consider the response

function -

R( t) a e 2t sin lit (7.11)

which has been discussed previously as Example 2 of Section 5.3 and

plotted as Figure 5.1. A total of 200 samples were generated and the

response was modeled for 20 , 40 , 80 , 100, 150 , and 200 of these samples

using the pulse and ramp approximations discussed in Section 7.1. The

results of applying the Padé approximation to determine the poles are

presented in Table 7.1. Note that the results are not satisfactory H

• until eighty samples were used. Figure 5.1 shows that the response

does not damp to nearly zero until after time step forty. In order to

get valid results all of the transient response must be used until the

time at which the response is nearly equal to zero; The results for

eighty through 200 samples are promising however .

Example 2

Here a transient response was generated using two sets of complex

pole pairs . The response used is

r ( t )  — e 2t sin u t + e 3t sin 1.5 u t  . (7.12)

— The results of the Pad4 approximation procedure for this transient

response are tabulated in Table 7.2.  Note that in this case satisfactory

results were not obtained until 200 samples were used even though the

response has damped to zero at around the f i f t i e th  time step. This in—

dicates that a larger number of samples is needed to resolve the presence
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TABLE 7.1

THE RESULTING POLES USING THE PADE APPR OXIMATION ON THE TRANSIENT
RESPONSE OF EXAMPLE 1: R(r)  a e ’2t ~~~~~ ~~~

Number of Percent Error
Samples Used Poles Extracted Real Part Imag inary Fart

20 —1 .5009 ± 3 2.1523 13.40 26.56

40 —1. 9076 ± 3 2.8563 2.48 7.66

80 — 1.9998 ± 3 3.1405 0.004 0.004

100 —2.0001 ± 3 3.1414 0.002 0.004

150 —2.0001 ± 3 3.1414 0.002 0.003

200 —2.0001 ± 3 3.1414 0.002 0.003

TABLE 7 . 2

THE RESULTING POLES USING TILE PADE AP~ ROX IMAT ION ON THE TRANSIENT
RESPONSE OF EXAMPLE 2: R ( t )  a 2 sin ut + e~ 3t sin 1.5 ut

Number of Percent Error

Samples Used Poles Extracted Real Part Imaginary Part

—1.5734 ± 3 -3.27 73 11.45 3.64
100 -

—2.1637 ± 3 3.8707 14.97 15.06

—1.9994 ± 3 3.1408 0.017 0.078
200

— 2.9970 ± 3 3.7016 0.05 3 0.192
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of two pole pairs than for only one pole pair. The accuracy, however ,

for 200 samples is still very satisfactory.

- Example 3

As a final example consider the transient response made up of three

pole pairs such that

R(t) a e 2t sin u t + e 3t sin 1.5 ut + e 4t sin 2ur t . (7.13)

This signal is similar to those of Examples 1 and 2 in that it decays

to very near zero at about the f i f t ie th  time step. The results of

applying the Padé approximation to this response are tabulated in

Table 7.3. Note that satisfactory results are never really obtained

for the imaginary parts of the second and third pole pairs, because

the approximations used in the procedure cause the Padé method to have

• difficulty in extracting more than two sets of poles. This, of course,

is a very limiting factor since in almost all cases one would desire to

obtain at least six pole pairs.

7-3 Conclusions Regarding the Fade Approximation

It has been shown that the Padé approximation performed satisfactorily

when only one or two pole pairs were desired but failed to give satis—

factory poles when three pole pairs were sought. The method was also

applied to signals-with more than three pole pairs and which did not damp

out so quickly, but again the results were unsatisfactory. For the cases

of one and two pole pairs it was necessary to include essentially all of

the waveform until it damped to zero. This in itself is a limiting

- 

4 
factor. Thus, the conclusion would then be that the Fade approximation, as

it was used here , is not a satisfactory method for extracting the true

poles from a set of transient response data.
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TABLE 7.3

THE RESULTING POLES USING THE FADE APPROXIMATION ON THE TRAN~ IENT
RESPONSE OF EXAMPLE 3: R(t) — e ’2t sin itt + e 3t sin 1.5 ut + e ~ sin 2 itt

Percent Error
Number of
Samples Used Poles Extracted Real Part Imaginary Part

—0.9671. ± 3 0.2879 27.73 76.62

100 —2.0313 ± j  3.1523 17.34 27.93

—3.5884 ± 3 5.3760 5.53 12.18

— 1 . 9 9 9 1  ± 3 3.1404 0 . 0 2 3  0 . 0 3 2

250 —2.99 15 ± 3 4 5577 0.152 2 .768

—4.0244 ± 3 6.0014 0.328 3.783

—1.9991 ± 3 3.1404 0.023 0.032

400 -2.9915 ± 3 4.5577 0.153 2.768

—4.0244 ± 3 6.0014 0.327 3.782
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8. CONCLUSIONS

The numerical methods described in this thesis provide a technique

by which the true complex natural resonances of a system may be extracted

from a set of discrete transient response data of that system. The

numerical procedure, known as Prony’s algorithm, is applicable to systems

possessing multiple poles as well as simple poles. There are two ef-

ficient and systematic methods by which it is possible to determine the

number of poles inherent in the transient response. In employing both of

these schemes the poles are obtained as a by—product of the calculations.

The Householder orthogonalization method, which is the most systematic

of the two procedures for  determining the number of poles, breaks down

if any significant noise is added. The eigenvalue procedure on the other

hand uses the known standard deviation of the noise to aid in determining

the number of poles but is not quite as systematic as the orthogonalization

procedure.

The problem of noise in the transient response is a critical point.

As mentioned above, the standard deviation of the noise is used to aid

in determining the number of poles. However, Prony ’s method will not

extract the true poles if the signal—to—noise ratio is below a certain

level. This level appears to be in the 10 to 20 dB range for the in-

dividual signal components comprising the entire signal. The signal—to—

noise level for the total signal needs to be as good as 30 dB. This

f act causes Prony ’s method to be limited to use with extremely clean

data systems. However, if several sets of noisy transient responses are

measured and averaged together, the standard deviation of the noise

decreases as one over the square root of the number of trials run.
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This approach could be applied to laboratory test systems where a test

can be repeated as many times as desired. More work should be done with

actual noisy experimental data where the data are measured specifically

for the application of Prony’s method. The results would then allow

* for firm conclusions to be made about the influence of experimental

noise on Prony’s method.

There are several applications of Prony ’s method including system

analysis, radar target recognition, the study of spectral characteristics, 
- 

-

and data reduction and extrapolation. Prony’s method is an invaluable

tool in data reduction and in the determination of the spectral charac-

teristics of a system. The application of the method to radar target

recognition is also very exciting but seems to be limited by the noise level

problem . More work should be done in applying Prony ’s method to the

areas mentioned as well as to new areas.

The Padé approximation is an alternative to Prony ’s method. The

study of this method shows that the Fade approximation is not applicable

to systems containing more than one or two pole pairs. This restricts its

usefulness for SEM related problems. No other alternatives to Prony ’s

method were found.

The whole field of S~1 is new and is growing so fast that the outlook

for use of the techniques presented and developed in this thesis is very

promising. It is hoped that these techniques will help simplify the

study and the analysis of the more complicated electromagnetic structures.
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